File size: 2,061 Bytes
a5d8822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d606b14
a5d8822
af17cba
 
80285d6
 
 
 
 
 
 
 
 
 
 
 
 
 
a5d8822
 
 
 
af17cba
a5d8822
d606b14
a5d8822
 
 
 
77f0f70
d76ac14
80285d6
a5d8822
 
 
 
 
 
af17cba
 
 
 
 
 
 
 
 
 
a5d8822
 
 
 
d76ac14
 
 
a5d8822
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: test-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test-model

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2455
- Accuracy: 0.9336

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 600
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.9682        | 0.9639 | 60   | 0.8113          | 0.6177   |
| 0.7135        | 1.9277 | 120  | 0.6503          | 0.7425   |
| 0.585         | 2.8916 | 180  | 0.5173          | 0.8149   |
| 0.4603        | 3.8554 | 240  | 0.4556          | 0.8551   |
| 0.3855        | 4.8193 | 300  | 0.2616          | 0.9256   |
| 0.284         | 5.7831 | 360  | 0.3075          | 0.9235   |
| 0.2411        | 6.7470 | 420  | 0.2254          | 0.9376   |
| 0.1818        | 7.7108 | 480  | 0.2609          | 0.9356   |
| 0.1644        | 8.6747 | 540  | 0.2562          | 0.9336   |
| 0.1285        | 9.6386 | 600  | 0.2455          | 0.9336   |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1