PY007 commited on
Commit
2977cfc
·
1 Parent(s): c52d5ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -47
README.md CHANGED
@@ -21,50 +21,5 @@ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion to
21
 
22
  We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
23
 
24
- #### This Model
25
- This is an intermediate checkpoint with 50K steps and 105B tokens.
26
-
27
- #### Releases Schedule
28
- We will be rolling out intermediate checkpoints following the below schedule. We also include some baseline models for comparison.
29
-
30
- | Date | HF Checkpoint | Tokens | Step | HellaSwag Acc_norm |
31
- |------------|-------------------------------------------------|--------|------|---------------------|
32
- | Baseline | [StableLM-Alpha-3B](https://huggingface.co/stabilityai/stablelm-base-alpha-3b)| 800B | -- | 38.31 |
33
- | Baseline | [Pythia-1B-intermediate-step-50k-105b](https://huggingface.co/EleutherAI/pythia-1b/tree/step50000) | 105B | 50k | 42.04 |
34
- | Baseline | [Pythia-1B](https://huggingface.co/EleutherAI/pythia-1b) | 300B | 143k | 47.16 |
35
- | 2023-09-04 | [TinyLlama-1.1B-intermediate-step-50k-105b](https://huggingface.co/PY007/TinyLlama-1.1B-step-50K-105b) | 105B | 50k | 43.50 |
36
- | 2023-09-16 | -- | 500B | -- | -- |
37
- | 2023-10-01 | -- | 1T | -- | -- |
38
- | 2023-10-16 | -- | 1.5T | -- | -- |
39
- | 2023-10-31 | -- | 2T | -- | -- |
40
- | 2023-11-15 | -- | 2.5T | -- | -- |
41
- | 2023-12-01 | -- | 3T | -- | -- |
42
-
43
- #### How to use
44
- You will need the transformers>=4.31
45
- Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
46
- ```
47
- from transformers import AutoTokenizer
48
- import transformers
49
- import torch
50
- model = "PY007/TinyLlama-1.1B-step-50K-105b"
51
- tokenizer = AutoTokenizer.from_pretrained(model)
52
- pipeline = transformers.pipeline(
53
- "text-generation",
54
- model=model,
55
- torch_dtype=torch.float16,
56
- device_map="auto",
57
- )
58
-
59
- sequences = pipeline(
60
- 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.',
61
- do_sample=True,
62
- top_k=10,
63
- num_return_sequences=1,
64
- repetition_penalty=1.5,
65
- eos_token_id=tokenizer.eos_token_id,
66
- max_length=500,
67
- )
68
- for seq in sequences:
69
- print(f"Result: {seq['generated_text']}")
70
- ```
 
21
 
22
  We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
23
 
24
+ #### This Collection
25
+ This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.