TinyPixel commited on
Commit
7c52d61
·
1 Parent(s): fb91e1f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: EleutherAI/pythia-1b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.2.dev0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "EleutherAI/pythia-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "dense_h_to_4h",
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5ff176319de42af1bf3c9a9b68adacdb7fdd28af91187d348e5c9c14298327e
3
+ size 134235712
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a409e4926d4e820b5d0263e39c83406a12e8f38656e6411b2d391c5a0b82a3d
3
+ size 268515002
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e261067626af584346d0e38768fd6ee675f78321e028f914ae86384c7267b32b
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a0cfd769461516abe4660f1f99b67e2562d6da4a7d0f388032591371e591c78
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|padding|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "50254": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50255": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50256": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50257": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50258": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50259": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50260": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50261": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50262": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50263": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50264": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50265": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50266": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50267": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50268": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50269": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50270": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50271": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50272": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50273": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50274": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50275": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50276": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50277": {
205
+ "content": "[PAD]",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ }
212
+ },
213
+ "bos_token": "<|endoftext|>",
214
+ "clean_up_tokenization_spaces": true,
215
+ "eos_token": "<|endoftext|>",
216
+ "model_max_length": 1000000000000000019884624838656,
217
+ "pad_token": "[PAD]",
218
+ "tokenizer_class": "GPTNeoXTokenizer",
219
+ "unk_token": "<|endoftext|>"
220
+ }
trainer_state.json ADDED
@@ -0,0 +1,1857 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984729715972717,
5
+ "eval_steps": 500,
6
+ "global_step": 613,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0002,
14
+ "loss": 1.832,
15
+ "step": 2
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0002,
20
+ "loss": 1.7302,
21
+ "step": 4
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.0002,
26
+ "loss": 1.7378,
27
+ "step": 6
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 1.7793,
33
+ "step": 8
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.0002,
38
+ "loss": 1.7485,
39
+ "step": 10
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.0002,
44
+ "loss": 1.7227,
45
+ "step": 12
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.7285,
51
+ "step": 14
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "learning_rate": 0.0002,
56
+ "loss": 1.7326,
57
+ "step": 16
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.0002,
62
+ "loss": 1.8654,
63
+ "step": 18
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0002,
68
+ "loss": 1.7466,
69
+ "step": 20
70
+ },
71
+ {
72
+ "epoch": 0.04,
73
+ "learning_rate": 0.0002,
74
+ "loss": 1.7182,
75
+ "step": 22
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0002,
80
+ "loss": 1.7394,
81
+ "step": 24
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.0002,
86
+ "loss": 1.7596,
87
+ "step": 26
88
+ },
89
+ {
90
+ "epoch": 0.05,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.8005,
93
+ "step": 28
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0002,
98
+ "loss": 1.7609,
99
+ "step": 30
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0002,
104
+ "loss": 1.8792,
105
+ "step": 32
106
+ },
107
+ {
108
+ "epoch": 0.06,
109
+ "learning_rate": 0.0002,
110
+ "loss": 1.8621,
111
+ "step": 34
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0002,
116
+ "loss": 1.7995,
117
+ "step": 36
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0002,
122
+ "loss": 2.0867,
123
+ "step": 38
124
+ },
125
+ {
126
+ "epoch": 0.07,
127
+ "learning_rate": 0.0002,
128
+ "loss": 2.0513,
129
+ "step": 40
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8084,
135
+ "step": 42
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0002,
140
+ "loss": 1.8203,
141
+ "step": 44
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0002,
146
+ "loss": 1.7905,
147
+ "step": 46
148
+ },
149
+ {
150
+ "epoch": 0.08,
151
+ "learning_rate": 0.0002,
152
+ "loss": 1.7966,
153
+ "step": 48
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0002,
158
+ "loss": 1.295,
159
+ "step": 50
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.0002,
164
+ "loss": 1.6161,
165
+ "step": 52
166
+ },
167
+ {
168
+ "epoch": 0.09,
169
+ "learning_rate": 0.0002,
170
+ "loss": 1.6371,
171
+ "step": 54
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7243,
177
+ "step": 56
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0002,
182
+ "loss": 1.5343,
183
+ "step": 58
184
+ },
185
+ {
186
+ "epoch": 0.1,
187
+ "learning_rate": 0.0002,
188
+ "loss": 1.5573,
189
+ "step": 60
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0002,
194
+ "loss": 1.5717,
195
+ "step": 62
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.0002,
200
+ "loss": 1.591,
201
+ "step": 64
202
+ },
203
+ {
204
+ "epoch": 0.11,
205
+ "learning_rate": 0.0002,
206
+ "loss": 1.8383,
207
+ "step": 66
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0002,
212
+ "loss": 1.6448,
213
+ "step": 68
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.6847,
219
+ "step": 70
220
+ },
221
+ {
222
+ "epoch": 0.12,
223
+ "learning_rate": 0.0002,
224
+ "loss": 1.626,
225
+ "step": 72
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0002,
230
+ "loss": 1.64,
231
+ "step": 74
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.0002,
236
+ "loss": 1.6266,
237
+ "step": 76
238
+ },
239
+ {
240
+ "epoch": 0.13,
241
+ "learning_rate": 0.0002,
242
+ "loss": 1.8701,
243
+ "step": 78
244
+ },
245
+ {
246
+ "epoch": 0.13,
247
+ "learning_rate": 0.0002,
248
+ "loss": 1.825,
249
+ "step": 80
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.0002,
254
+ "loss": 1.6469,
255
+ "step": 82
256
+ },
257
+ {
258
+ "epoch": 0.14,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.6921,
261
+ "step": 84
262
+ },
263
+ {
264
+ "epoch": 0.14,
265
+ "learning_rate": 0.0002,
266
+ "loss": 1.6931,
267
+ "step": 86
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.0002,
272
+ "loss": 1.7856,
273
+ "step": 88
274
+ },
275
+ {
276
+ "epoch": 0.15,
277
+ "learning_rate": 0.0002,
278
+ "loss": 1.8564,
279
+ "step": 90
280
+ },
281
+ {
282
+ "epoch": 0.15,
283
+ "learning_rate": 0.0002,
284
+ "loss": 1.8208,
285
+ "step": 92
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.0002,
290
+ "loss": 1.8388,
291
+ "step": 94
292
+ },
293
+ {
294
+ "epoch": 0.16,
295
+ "learning_rate": 0.0002,
296
+ "loss": 1.7202,
297
+ "step": 96
298
+ },
299
+ {
300
+ "epoch": 0.16,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.7919,
303
+ "step": 98
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0002,
308
+ "loss": 1.5837,
309
+ "step": 100
310
+ },
311
+ {
312
+ "epoch": 0.17,
313
+ "learning_rate": 0.0002,
314
+ "loss": 1.6023,
315
+ "step": 102
316
+ },
317
+ {
318
+ "epoch": 0.17,
319
+ "learning_rate": 0.0002,
320
+ "loss": 1.5409,
321
+ "step": 104
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.0002,
326
+ "loss": 1.5498,
327
+ "step": 106
328
+ },
329
+ {
330
+ "epoch": 0.18,
331
+ "learning_rate": 0.0002,
332
+ "loss": 1.5299,
333
+ "step": 108
334
+ },
335
+ {
336
+ "epoch": 0.18,
337
+ "learning_rate": 0.0002,
338
+ "loss": 1.7106,
339
+ "step": 110
340
+ },
341
+ {
342
+ "epoch": 0.18,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.6908,
345
+ "step": 112
346
+ },
347
+ {
348
+ "epoch": 0.19,
349
+ "learning_rate": 0.0002,
350
+ "loss": 1.6457,
351
+ "step": 114
352
+ },
353
+ {
354
+ "epoch": 0.19,
355
+ "learning_rate": 0.0002,
356
+ "loss": 1.6573,
357
+ "step": 116
358
+ },
359
+ {
360
+ "epoch": 0.19,
361
+ "learning_rate": 0.0002,
362
+ "loss": 1.6344,
363
+ "step": 118
364
+ },
365
+ {
366
+ "epoch": 0.2,
367
+ "learning_rate": 0.0002,
368
+ "loss": 1.6821,
369
+ "step": 120
370
+ },
371
+ {
372
+ "epoch": 0.2,
373
+ "learning_rate": 0.0002,
374
+ "loss": 1.5921,
375
+ "step": 122
376
+ },
377
+ {
378
+ "epoch": 0.2,
379
+ "learning_rate": 0.0002,
380
+ "loss": 1.7669,
381
+ "step": 124
382
+ },
383
+ {
384
+ "epoch": 0.21,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.6449,
387
+ "step": 126
388
+ },
389
+ {
390
+ "epoch": 0.21,
391
+ "learning_rate": 0.0002,
392
+ "loss": 1.7399,
393
+ "step": 128
394
+ },
395
+ {
396
+ "epoch": 0.21,
397
+ "learning_rate": 0.0002,
398
+ "loss": 1.6255,
399
+ "step": 130
400
+ },
401
+ {
402
+ "epoch": 0.22,
403
+ "learning_rate": 0.0002,
404
+ "loss": 1.6353,
405
+ "step": 132
406
+ },
407
+ {
408
+ "epoch": 0.22,
409
+ "learning_rate": 0.0002,
410
+ "loss": 1.7772,
411
+ "step": 134
412
+ },
413
+ {
414
+ "epoch": 0.22,
415
+ "learning_rate": 0.0002,
416
+ "loss": 1.6832,
417
+ "step": 136
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.0002,
422
+ "loss": 1.9061,
423
+ "step": 138
424
+ },
425
+ {
426
+ "epoch": 0.23,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.9422,
429
+ "step": 140
430
+ },
431
+ {
432
+ "epoch": 0.23,
433
+ "learning_rate": 0.0002,
434
+ "loss": 1.8643,
435
+ "step": 142
436
+ },
437
+ {
438
+ "epoch": 0.23,
439
+ "learning_rate": 0.0002,
440
+ "loss": 1.8782,
441
+ "step": 144
442
+ },
443
+ {
444
+ "epoch": 0.24,
445
+ "learning_rate": 0.0002,
446
+ "loss": 1.8023,
447
+ "step": 146
448
+ },
449
+ {
450
+ "epoch": 0.24,
451
+ "learning_rate": 0.0002,
452
+ "loss": 1.7753,
453
+ "step": 148
454
+ },
455
+ {
456
+ "epoch": 0.24,
457
+ "learning_rate": 0.0002,
458
+ "loss": 1.4318,
459
+ "step": 150
460
+ },
461
+ {
462
+ "epoch": 0.25,
463
+ "learning_rate": 0.0002,
464
+ "loss": 1.5817,
465
+ "step": 152
466
+ },
467
+ {
468
+ "epoch": 0.25,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.5097,
471
+ "step": 154
472
+ },
473
+ {
474
+ "epoch": 0.25,
475
+ "learning_rate": 0.0002,
476
+ "loss": 1.5909,
477
+ "step": 156
478
+ },
479
+ {
480
+ "epoch": 0.26,
481
+ "learning_rate": 0.0002,
482
+ "loss": 1.5129,
483
+ "step": 158
484
+ },
485
+ {
486
+ "epoch": 0.26,
487
+ "learning_rate": 0.0002,
488
+ "loss": 1.5801,
489
+ "step": 160
490
+ },
491
+ {
492
+ "epoch": 0.26,
493
+ "learning_rate": 0.0002,
494
+ "loss": 1.6804,
495
+ "step": 162
496
+ },
497
+ {
498
+ "epoch": 0.27,
499
+ "learning_rate": 0.0002,
500
+ "loss": 1.6172,
501
+ "step": 164
502
+ },
503
+ {
504
+ "epoch": 0.27,
505
+ "learning_rate": 0.0002,
506
+ "loss": 1.6786,
507
+ "step": 166
508
+ },
509
+ {
510
+ "epoch": 0.27,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.592,
513
+ "step": 168
514
+ },
515
+ {
516
+ "epoch": 0.28,
517
+ "learning_rate": 0.0002,
518
+ "loss": 1.6977,
519
+ "step": 170
520
+ },
521
+ {
522
+ "epoch": 0.28,
523
+ "learning_rate": 0.0002,
524
+ "loss": 1.6936,
525
+ "step": 172
526
+ },
527
+ {
528
+ "epoch": 0.28,
529
+ "learning_rate": 0.0002,
530
+ "loss": 1.6187,
531
+ "step": 174
532
+ },
533
+ {
534
+ "epoch": 0.29,
535
+ "learning_rate": 0.0002,
536
+ "loss": 1.6936,
537
+ "step": 176
538
+ },
539
+ {
540
+ "epoch": 0.29,
541
+ "learning_rate": 0.0002,
542
+ "loss": 1.7276,
543
+ "step": 178
544
+ },
545
+ {
546
+ "epoch": 0.29,
547
+ "learning_rate": 0.0002,
548
+ "loss": 1.6662,
549
+ "step": 180
550
+ },
551
+ {
552
+ "epoch": 0.3,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.7768,
555
+ "step": 182
556
+ },
557
+ {
558
+ "epoch": 0.3,
559
+ "learning_rate": 0.0002,
560
+ "loss": 1.6908,
561
+ "step": 184
562
+ },
563
+ {
564
+ "epoch": 0.3,
565
+ "learning_rate": 0.0002,
566
+ "loss": 1.7045,
567
+ "step": 186
568
+ },
569
+ {
570
+ "epoch": 0.31,
571
+ "learning_rate": 0.0002,
572
+ "loss": 1.8561,
573
+ "step": 188
574
+ },
575
+ {
576
+ "epoch": 0.31,
577
+ "learning_rate": 0.0002,
578
+ "loss": 1.757,
579
+ "step": 190
580
+ },
581
+ {
582
+ "epoch": 0.31,
583
+ "learning_rate": 0.0002,
584
+ "loss": 1.8863,
585
+ "step": 192
586
+ },
587
+ {
588
+ "epoch": 0.32,
589
+ "learning_rate": 0.0002,
590
+ "loss": 1.7737,
591
+ "step": 194
592
+ },
593
+ {
594
+ "epoch": 0.32,
595
+ "learning_rate": 0.0002,
596
+ "loss": 1.7499,
597
+ "step": 196
598
+ },
599
+ {
600
+ "epoch": 0.32,
601
+ "learning_rate": 0.0002,
602
+ "loss": 1.6848,
603
+ "step": 198
604
+ },
605
+ {
606
+ "epoch": 0.33,
607
+ "learning_rate": 0.0002,
608
+ "loss": 1.3447,
609
+ "step": 200
610
+ },
611
+ {
612
+ "epoch": 0.33,
613
+ "learning_rate": 0.0002,
614
+ "loss": 1.6347,
615
+ "step": 202
616
+ },
617
+ {
618
+ "epoch": 0.33,
619
+ "learning_rate": 0.0002,
620
+ "loss": 1.5359,
621
+ "step": 204
622
+ },
623
+ {
624
+ "epoch": 0.34,
625
+ "learning_rate": 0.0002,
626
+ "loss": 1.6026,
627
+ "step": 206
628
+ },
629
+ {
630
+ "epoch": 0.34,
631
+ "learning_rate": 0.0002,
632
+ "loss": 1.606,
633
+ "step": 208
634
+ },
635
+ {
636
+ "epoch": 0.34,
637
+ "learning_rate": 0.0002,
638
+ "loss": 1.6077,
639
+ "step": 210
640
+ },
641
+ {
642
+ "epoch": 0.35,
643
+ "learning_rate": 0.0002,
644
+ "loss": 1.7816,
645
+ "step": 212
646
+ },
647
+ {
648
+ "epoch": 0.35,
649
+ "learning_rate": 0.0002,
650
+ "loss": 1.6046,
651
+ "step": 214
652
+ },
653
+ {
654
+ "epoch": 0.35,
655
+ "learning_rate": 0.0002,
656
+ "loss": 1.698,
657
+ "step": 216
658
+ },
659
+ {
660
+ "epoch": 0.36,
661
+ "learning_rate": 0.0002,
662
+ "loss": 1.7219,
663
+ "step": 218
664
+ },
665
+ {
666
+ "epoch": 0.36,
667
+ "learning_rate": 0.0002,
668
+ "loss": 1.8967,
669
+ "step": 220
670
+ },
671
+ {
672
+ "epoch": 0.36,
673
+ "learning_rate": 0.0002,
674
+ "loss": 1.6255,
675
+ "step": 222
676
+ },
677
+ {
678
+ "epoch": 0.36,
679
+ "learning_rate": 0.0002,
680
+ "loss": 1.5728,
681
+ "step": 224
682
+ },
683
+ {
684
+ "epoch": 0.37,
685
+ "learning_rate": 0.0002,
686
+ "loss": 1.6896,
687
+ "step": 226
688
+ },
689
+ {
690
+ "epoch": 0.37,
691
+ "learning_rate": 0.0002,
692
+ "loss": 1.5951,
693
+ "step": 228
694
+ },
695
+ {
696
+ "epoch": 0.37,
697
+ "learning_rate": 0.0002,
698
+ "loss": 1.6148,
699
+ "step": 230
700
+ },
701
+ {
702
+ "epoch": 0.38,
703
+ "learning_rate": 0.0002,
704
+ "loss": 1.9197,
705
+ "step": 232
706
+ },
707
+ {
708
+ "epoch": 0.38,
709
+ "learning_rate": 0.0002,
710
+ "loss": 1.8497,
711
+ "step": 234
712
+ },
713
+ {
714
+ "epoch": 0.38,
715
+ "learning_rate": 0.0002,
716
+ "loss": 1.7573,
717
+ "step": 236
718
+ },
719
+ {
720
+ "epoch": 0.39,
721
+ "learning_rate": 0.0002,
722
+ "loss": 1.7234,
723
+ "step": 238
724
+ },
725
+ {
726
+ "epoch": 0.39,
727
+ "learning_rate": 0.0002,
728
+ "loss": 1.7904,
729
+ "step": 240
730
+ },
731
+ {
732
+ "epoch": 0.39,
733
+ "learning_rate": 0.0002,
734
+ "loss": 1.72,
735
+ "step": 242
736
+ },
737
+ {
738
+ "epoch": 0.4,
739
+ "learning_rate": 0.0002,
740
+ "loss": 1.9269,
741
+ "step": 244
742
+ },
743
+ {
744
+ "epoch": 0.4,
745
+ "learning_rate": 0.0002,
746
+ "loss": 1.8646,
747
+ "step": 246
748
+ },
749
+ {
750
+ "epoch": 0.4,
751
+ "learning_rate": 0.0002,
752
+ "loss": 1.7174,
753
+ "step": 248
754
+ },
755
+ {
756
+ "epoch": 0.41,
757
+ "learning_rate": 0.0002,
758
+ "loss": 1.3772,
759
+ "step": 250
760
+ },
761
+ {
762
+ "epoch": 0.41,
763
+ "learning_rate": 0.0002,
764
+ "loss": 1.5485,
765
+ "step": 252
766
+ },
767
+ {
768
+ "epoch": 0.41,
769
+ "learning_rate": 0.0002,
770
+ "loss": 1.5269,
771
+ "step": 254
772
+ },
773
+ {
774
+ "epoch": 0.42,
775
+ "learning_rate": 0.0002,
776
+ "loss": 1.4701,
777
+ "step": 256
778
+ },
779
+ {
780
+ "epoch": 0.42,
781
+ "learning_rate": 0.0002,
782
+ "loss": 1.5889,
783
+ "step": 258
784
+ },
785
+ {
786
+ "epoch": 0.42,
787
+ "learning_rate": 0.0002,
788
+ "loss": 1.5645,
789
+ "step": 260
790
+ },
791
+ {
792
+ "epoch": 0.43,
793
+ "learning_rate": 0.0002,
794
+ "loss": 1.6054,
795
+ "step": 262
796
+ },
797
+ {
798
+ "epoch": 0.43,
799
+ "learning_rate": 0.0002,
800
+ "loss": 1.5589,
801
+ "step": 264
802
+ },
803
+ {
804
+ "epoch": 0.43,
805
+ "learning_rate": 0.0002,
806
+ "loss": 1.6552,
807
+ "step": 266
808
+ },
809
+ {
810
+ "epoch": 0.44,
811
+ "learning_rate": 0.0002,
812
+ "loss": 1.5181,
813
+ "step": 268
814
+ },
815
+ {
816
+ "epoch": 0.44,
817
+ "learning_rate": 0.0002,
818
+ "loss": 1.6459,
819
+ "step": 270
820
+ },
821
+ {
822
+ "epoch": 0.44,
823
+ "learning_rate": 0.0002,
824
+ "loss": 1.722,
825
+ "step": 272
826
+ },
827
+ {
828
+ "epoch": 0.45,
829
+ "learning_rate": 0.0002,
830
+ "loss": 1.5711,
831
+ "step": 274
832
+ },
833
+ {
834
+ "epoch": 0.45,
835
+ "learning_rate": 0.0002,
836
+ "loss": 1.6919,
837
+ "step": 276
838
+ },
839
+ {
840
+ "epoch": 0.45,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6426,
843
+ "step": 278
844
+ },
845
+ {
846
+ "epoch": 0.46,
847
+ "learning_rate": 0.0002,
848
+ "loss": 1.6417,
849
+ "step": 280
850
+ },
851
+ {
852
+ "epoch": 0.46,
853
+ "learning_rate": 0.0002,
854
+ "loss": 1.6409,
855
+ "step": 282
856
+ },
857
+ {
858
+ "epoch": 0.46,
859
+ "learning_rate": 0.0002,
860
+ "loss": 1.824,
861
+ "step": 284
862
+ },
863
+ {
864
+ "epoch": 0.47,
865
+ "learning_rate": 0.0002,
866
+ "loss": 1.7294,
867
+ "step": 286
868
+ },
869
+ {
870
+ "epoch": 0.47,
871
+ "learning_rate": 0.0002,
872
+ "loss": 1.6698,
873
+ "step": 288
874
+ },
875
+ {
876
+ "epoch": 0.47,
877
+ "learning_rate": 0.0002,
878
+ "loss": 1.7013,
879
+ "step": 290
880
+ },
881
+ {
882
+ "epoch": 0.48,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.699,
885
+ "step": 292
886
+ },
887
+ {
888
+ "epoch": 0.48,
889
+ "learning_rate": 0.0002,
890
+ "loss": 1.7408,
891
+ "step": 294
892
+ },
893
+ {
894
+ "epoch": 0.48,
895
+ "learning_rate": 0.0002,
896
+ "loss": 1.7299,
897
+ "step": 296
898
+ },
899
+ {
900
+ "epoch": 0.49,
901
+ "learning_rate": 0.0002,
902
+ "loss": 1.7278,
903
+ "step": 298
904
+ },
905
+ {
906
+ "epoch": 0.49,
907
+ "learning_rate": 0.0002,
908
+ "loss": 1.2081,
909
+ "step": 300
910
+ },
911
+ {
912
+ "epoch": 0.49,
913
+ "learning_rate": 0.0002,
914
+ "loss": 1.5635,
915
+ "step": 302
916
+ },
917
+ {
918
+ "epoch": 0.5,
919
+ "learning_rate": 0.0002,
920
+ "loss": 1.443,
921
+ "step": 304
922
+ },
923
+ {
924
+ "epoch": 0.5,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.4373,
927
+ "step": 306
928
+ },
929
+ {
930
+ "epoch": 0.5,
931
+ "learning_rate": 0.0002,
932
+ "loss": 1.5823,
933
+ "step": 308
934
+ },
935
+ {
936
+ "epoch": 0.5,
937
+ "learning_rate": 0.0002,
938
+ "loss": 1.6226,
939
+ "step": 310
940
+ },
941
+ {
942
+ "epoch": 0.51,
943
+ "learning_rate": 0.0002,
944
+ "loss": 1.452,
945
+ "step": 312
946
+ },
947
+ {
948
+ "epoch": 0.51,
949
+ "learning_rate": 0.0002,
950
+ "loss": 1.6459,
951
+ "step": 314
952
+ },
953
+ {
954
+ "epoch": 0.51,
955
+ "learning_rate": 0.0002,
956
+ "loss": 1.5302,
957
+ "step": 316
958
+ },
959
+ {
960
+ "epoch": 0.52,
961
+ "learning_rate": 0.0002,
962
+ "loss": 1.5737,
963
+ "step": 318
964
+ },
965
+ {
966
+ "epoch": 0.52,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.6102,
969
+ "step": 320
970
+ },
971
+ {
972
+ "epoch": 0.52,
973
+ "learning_rate": 0.0002,
974
+ "loss": 1.6705,
975
+ "step": 322
976
+ },
977
+ {
978
+ "epoch": 0.53,
979
+ "learning_rate": 0.0002,
980
+ "loss": 1.6721,
981
+ "step": 324
982
+ },
983
+ {
984
+ "epoch": 0.53,
985
+ "learning_rate": 0.0002,
986
+ "loss": 1.8056,
987
+ "step": 326
988
+ },
989
+ {
990
+ "epoch": 0.53,
991
+ "learning_rate": 0.0002,
992
+ "loss": 1.5095,
993
+ "step": 328
994
+ },
995
+ {
996
+ "epoch": 0.54,
997
+ "learning_rate": 0.0002,
998
+ "loss": 1.7423,
999
+ "step": 330
1000
+ },
1001
+ {
1002
+ "epoch": 0.54,
1003
+ "learning_rate": 0.0002,
1004
+ "loss": 1.9658,
1005
+ "step": 332
1006
+ },
1007
+ {
1008
+ "epoch": 0.54,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 1.6538,
1011
+ "step": 334
1012
+ },
1013
+ {
1014
+ "epoch": 0.55,
1015
+ "learning_rate": 0.0002,
1016
+ "loss": 1.706,
1017
+ "step": 336
1018
+ },
1019
+ {
1020
+ "epoch": 0.55,
1021
+ "learning_rate": 0.0002,
1022
+ "loss": 1.6369,
1023
+ "step": 338
1024
+ },
1025
+ {
1026
+ "epoch": 0.55,
1027
+ "learning_rate": 0.0002,
1028
+ "loss": 1.8973,
1029
+ "step": 340
1030
+ },
1031
+ {
1032
+ "epoch": 0.56,
1033
+ "learning_rate": 0.0002,
1034
+ "loss": 1.9755,
1035
+ "step": 342
1036
+ },
1037
+ {
1038
+ "epoch": 0.56,
1039
+ "learning_rate": 0.0002,
1040
+ "loss": 1.9015,
1041
+ "step": 344
1042
+ },
1043
+ {
1044
+ "epoch": 0.56,
1045
+ "learning_rate": 0.0002,
1046
+ "loss": 1.6174,
1047
+ "step": 346
1048
+ },
1049
+ {
1050
+ "epoch": 0.57,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.7096,
1053
+ "step": 348
1054
+ },
1055
+ {
1056
+ "epoch": 0.57,
1057
+ "learning_rate": 0.0002,
1058
+ "loss": 1.4354,
1059
+ "step": 350
1060
+ },
1061
+ {
1062
+ "epoch": 0.57,
1063
+ "learning_rate": 0.0002,
1064
+ "loss": 1.5231,
1065
+ "step": 352
1066
+ },
1067
+ {
1068
+ "epoch": 0.58,
1069
+ "learning_rate": 0.0002,
1070
+ "loss": 1.5751,
1071
+ "step": 354
1072
+ },
1073
+ {
1074
+ "epoch": 0.58,
1075
+ "learning_rate": 0.0002,
1076
+ "loss": 1.6965,
1077
+ "step": 356
1078
+ },
1079
+ {
1080
+ "epoch": 0.58,
1081
+ "learning_rate": 0.0002,
1082
+ "loss": 1.5387,
1083
+ "step": 358
1084
+ },
1085
+ {
1086
+ "epoch": 0.59,
1087
+ "learning_rate": 0.0002,
1088
+ "loss": 1.6912,
1089
+ "step": 360
1090
+ },
1091
+ {
1092
+ "epoch": 0.59,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.7088,
1095
+ "step": 362
1096
+ },
1097
+ {
1098
+ "epoch": 0.59,
1099
+ "learning_rate": 0.0002,
1100
+ "loss": 1.6569,
1101
+ "step": 364
1102
+ },
1103
+ {
1104
+ "epoch": 0.6,
1105
+ "learning_rate": 0.0002,
1106
+ "loss": 1.4839,
1107
+ "step": 366
1108
+ },
1109
+ {
1110
+ "epoch": 0.6,
1111
+ "learning_rate": 0.0002,
1112
+ "loss": 1.6253,
1113
+ "step": 368
1114
+ },
1115
+ {
1116
+ "epoch": 0.6,
1117
+ "learning_rate": 0.0002,
1118
+ "loss": 1.6165,
1119
+ "step": 370
1120
+ },
1121
+ {
1122
+ "epoch": 0.61,
1123
+ "learning_rate": 0.0002,
1124
+ "loss": 1.6116,
1125
+ "step": 372
1126
+ },
1127
+ {
1128
+ "epoch": 0.61,
1129
+ "learning_rate": 0.0002,
1130
+ "loss": 1.6778,
1131
+ "step": 374
1132
+ },
1133
+ {
1134
+ "epoch": 0.61,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.5795,
1137
+ "step": 376
1138
+ },
1139
+ {
1140
+ "epoch": 0.62,
1141
+ "learning_rate": 0.0002,
1142
+ "loss": 1.5197,
1143
+ "step": 378
1144
+ },
1145
+ {
1146
+ "epoch": 0.62,
1147
+ "learning_rate": 0.0002,
1148
+ "loss": 1.7243,
1149
+ "step": 380
1150
+ },
1151
+ {
1152
+ "epoch": 0.62,
1153
+ "learning_rate": 0.0002,
1154
+ "loss": 1.7019,
1155
+ "step": 382
1156
+ },
1157
+ {
1158
+ "epoch": 0.63,
1159
+ "learning_rate": 0.0002,
1160
+ "loss": 1.7285,
1161
+ "step": 384
1162
+ },
1163
+ {
1164
+ "epoch": 0.63,
1165
+ "learning_rate": 0.0002,
1166
+ "loss": 1.8612,
1167
+ "step": 386
1168
+ },
1169
+ {
1170
+ "epoch": 0.63,
1171
+ "learning_rate": 0.0002,
1172
+ "loss": 1.8324,
1173
+ "step": 388
1174
+ },
1175
+ {
1176
+ "epoch": 0.64,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 1.828,
1179
+ "step": 390
1180
+ },
1181
+ {
1182
+ "epoch": 0.64,
1183
+ "learning_rate": 0.0002,
1184
+ "loss": 1.8997,
1185
+ "step": 392
1186
+ },
1187
+ {
1188
+ "epoch": 0.64,
1189
+ "learning_rate": 0.0002,
1190
+ "loss": 1.7828,
1191
+ "step": 394
1192
+ },
1193
+ {
1194
+ "epoch": 0.65,
1195
+ "learning_rate": 0.0002,
1196
+ "loss": 1.7951,
1197
+ "step": 396
1198
+ },
1199
+ {
1200
+ "epoch": 0.65,
1201
+ "learning_rate": 0.0002,
1202
+ "loss": 1.6725,
1203
+ "step": 398
1204
+ },
1205
+ {
1206
+ "epoch": 0.65,
1207
+ "learning_rate": 0.0002,
1208
+ "loss": 1.3894,
1209
+ "step": 400
1210
+ },
1211
+ {
1212
+ "epoch": 0.65,
1213
+ "learning_rate": 0.0002,
1214
+ "loss": 1.5686,
1215
+ "step": 402
1216
+ },
1217
+ {
1218
+ "epoch": 0.66,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 1.5029,
1221
+ "step": 404
1222
+ },
1223
+ {
1224
+ "epoch": 0.66,
1225
+ "learning_rate": 0.0002,
1226
+ "loss": 1.5377,
1227
+ "step": 406
1228
+ },
1229
+ {
1230
+ "epoch": 0.66,
1231
+ "learning_rate": 0.0002,
1232
+ "loss": 1.5741,
1233
+ "step": 408
1234
+ },
1235
+ {
1236
+ "epoch": 0.67,
1237
+ "learning_rate": 0.0002,
1238
+ "loss": 1.6417,
1239
+ "step": 410
1240
+ },
1241
+ {
1242
+ "epoch": 0.67,
1243
+ "learning_rate": 0.0002,
1244
+ "loss": 1.6645,
1245
+ "step": 412
1246
+ },
1247
+ {
1248
+ "epoch": 0.67,
1249
+ "learning_rate": 0.0002,
1250
+ "loss": 1.507,
1251
+ "step": 414
1252
+ },
1253
+ {
1254
+ "epoch": 0.68,
1255
+ "learning_rate": 0.0002,
1256
+ "loss": 1.5731,
1257
+ "step": 416
1258
+ },
1259
+ {
1260
+ "epoch": 0.68,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 1.6381,
1263
+ "step": 418
1264
+ },
1265
+ {
1266
+ "epoch": 0.68,
1267
+ "learning_rate": 0.0002,
1268
+ "loss": 1.6473,
1269
+ "step": 420
1270
+ },
1271
+ {
1272
+ "epoch": 0.69,
1273
+ "learning_rate": 0.0002,
1274
+ "loss": 1.572,
1275
+ "step": 422
1276
+ },
1277
+ {
1278
+ "epoch": 0.69,
1279
+ "learning_rate": 0.0002,
1280
+ "loss": 1.6077,
1281
+ "step": 424
1282
+ },
1283
+ {
1284
+ "epoch": 0.69,
1285
+ "learning_rate": 0.0002,
1286
+ "loss": 1.5529,
1287
+ "step": 426
1288
+ },
1289
+ {
1290
+ "epoch": 0.7,
1291
+ "learning_rate": 0.0002,
1292
+ "loss": 1.6884,
1293
+ "step": 428
1294
+ },
1295
+ {
1296
+ "epoch": 0.7,
1297
+ "learning_rate": 0.0002,
1298
+ "loss": 1.7012,
1299
+ "step": 430
1300
+ },
1301
+ {
1302
+ "epoch": 0.7,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 1.8241,
1305
+ "step": 432
1306
+ },
1307
+ {
1308
+ "epoch": 0.71,
1309
+ "learning_rate": 0.0002,
1310
+ "loss": 1.5989,
1311
+ "step": 434
1312
+ },
1313
+ {
1314
+ "epoch": 0.71,
1315
+ "learning_rate": 0.0002,
1316
+ "loss": 1.8149,
1317
+ "step": 436
1318
+ },
1319
+ {
1320
+ "epoch": 0.71,
1321
+ "learning_rate": 0.0002,
1322
+ "loss": 1.7036,
1323
+ "step": 438
1324
+ },
1325
+ {
1326
+ "epoch": 0.72,
1327
+ "learning_rate": 0.0002,
1328
+ "loss": 1.8744,
1329
+ "step": 440
1330
+ },
1331
+ {
1332
+ "epoch": 0.72,
1333
+ "learning_rate": 0.0002,
1334
+ "loss": 1.8474,
1335
+ "step": 442
1336
+ },
1337
+ {
1338
+ "epoch": 0.72,
1339
+ "learning_rate": 0.0002,
1340
+ "loss": 1.9166,
1341
+ "step": 444
1342
+ },
1343
+ {
1344
+ "epoch": 0.73,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 1.7282,
1347
+ "step": 446
1348
+ },
1349
+ {
1350
+ "epoch": 0.73,
1351
+ "learning_rate": 0.0002,
1352
+ "loss": 1.5606,
1353
+ "step": 448
1354
+ },
1355
+ {
1356
+ "epoch": 0.73,
1357
+ "learning_rate": 0.0002,
1358
+ "loss": 1.344,
1359
+ "step": 450
1360
+ },
1361
+ {
1362
+ "epoch": 0.74,
1363
+ "learning_rate": 0.0002,
1364
+ "loss": 1.5517,
1365
+ "step": 452
1366
+ },
1367
+ {
1368
+ "epoch": 0.74,
1369
+ "learning_rate": 0.0002,
1370
+ "loss": 1.6024,
1371
+ "step": 454
1372
+ },
1373
+ {
1374
+ "epoch": 0.74,
1375
+ "learning_rate": 0.0002,
1376
+ "loss": 1.5216,
1377
+ "step": 456
1378
+ },
1379
+ {
1380
+ "epoch": 0.75,
1381
+ "learning_rate": 0.0002,
1382
+ "loss": 1.4755,
1383
+ "step": 458
1384
+ },
1385
+ {
1386
+ "epoch": 0.75,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 1.6639,
1389
+ "step": 460
1390
+ },
1391
+ {
1392
+ "epoch": 0.75,
1393
+ "learning_rate": 0.0002,
1394
+ "loss": 1.581,
1395
+ "step": 462
1396
+ },
1397
+ {
1398
+ "epoch": 0.76,
1399
+ "learning_rate": 0.0002,
1400
+ "loss": 1.6928,
1401
+ "step": 464
1402
+ },
1403
+ {
1404
+ "epoch": 0.76,
1405
+ "learning_rate": 0.0002,
1406
+ "loss": 1.6463,
1407
+ "step": 466
1408
+ },
1409
+ {
1410
+ "epoch": 0.76,
1411
+ "learning_rate": 0.0002,
1412
+ "loss": 1.5748,
1413
+ "step": 468
1414
+ },
1415
+ {
1416
+ "epoch": 0.77,
1417
+ "learning_rate": 0.0002,
1418
+ "loss": 1.4912,
1419
+ "step": 470
1420
+ },
1421
+ {
1422
+ "epoch": 0.77,
1423
+ "learning_rate": 0.0002,
1424
+ "loss": 1.5931,
1425
+ "step": 472
1426
+ },
1427
+ {
1428
+ "epoch": 0.77,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 1.5764,
1431
+ "step": 474
1432
+ },
1433
+ {
1434
+ "epoch": 0.78,
1435
+ "learning_rate": 0.0002,
1436
+ "loss": 1.7494,
1437
+ "step": 476
1438
+ },
1439
+ {
1440
+ "epoch": 0.78,
1441
+ "learning_rate": 0.0002,
1442
+ "loss": 1.5696,
1443
+ "step": 478
1444
+ },
1445
+ {
1446
+ "epoch": 0.78,
1447
+ "learning_rate": 0.0002,
1448
+ "loss": 1.7536,
1449
+ "step": 480
1450
+ },
1451
+ {
1452
+ "epoch": 0.79,
1453
+ "learning_rate": 0.0002,
1454
+ "loss": 1.6516,
1455
+ "step": 482
1456
+ },
1457
+ {
1458
+ "epoch": 0.79,
1459
+ "learning_rate": 0.0002,
1460
+ "loss": 1.7752,
1461
+ "step": 484
1462
+ },
1463
+ {
1464
+ "epoch": 0.79,
1465
+ "learning_rate": 0.0002,
1466
+ "loss": 1.7401,
1467
+ "step": 486
1468
+ },
1469
+ {
1470
+ "epoch": 0.79,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 1.7159,
1473
+ "step": 488
1474
+ },
1475
+ {
1476
+ "epoch": 0.8,
1477
+ "learning_rate": 0.0002,
1478
+ "loss": 1.8925,
1479
+ "step": 490
1480
+ },
1481
+ {
1482
+ "epoch": 0.8,
1483
+ "learning_rate": 0.0002,
1484
+ "loss": 1.7296,
1485
+ "step": 492
1486
+ },
1487
+ {
1488
+ "epoch": 0.8,
1489
+ "learning_rate": 0.0002,
1490
+ "loss": 1.8207,
1491
+ "step": 494
1492
+ },
1493
+ {
1494
+ "epoch": 0.81,
1495
+ "learning_rate": 0.0002,
1496
+ "loss": 1.8015,
1497
+ "step": 496
1498
+ },
1499
+ {
1500
+ "epoch": 0.81,
1501
+ "learning_rate": 0.0002,
1502
+ "loss": 1.6387,
1503
+ "step": 498
1504
+ },
1505
+ {
1506
+ "epoch": 0.81,
1507
+ "learning_rate": 0.0002,
1508
+ "loss": 1.4543,
1509
+ "step": 500
1510
+ },
1511
+ {
1512
+ "epoch": 0.82,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 1.7365,
1515
+ "step": 502
1516
+ },
1517
+ {
1518
+ "epoch": 0.82,
1519
+ "learning_rate": 0.0002,
1520
+ "loss": 1.4881,
1521
+ "step": 504
1522
+ },
1523
+ {
1524
+ "epoch": 0.82,
1525
+ "learning_rate": 0.0002,
1526
+ "loss": 1.5554,
1527
+ "step": 506
1528
+ },
1529
+ {
1530
+ "epoch": 0.83,
1531
+ "learning_rate": 0.0002,
1532
+ "loss": 1.5883,
1533
+ "step": 508
1534
+ },
1535
+ {
1536
+ "epoch": 0.83,
1537
+ "learning_rate": 0.0002,
1538
+ "loss": 1.5758,
1539
+ "step": 510
1540
+ },
1541
+ {
1542
+ "epoch": 0.83,
1543
+ "learning_rate": 0.0002,
1544
+ "loss": 1.6395,
1545
+ "step": 512
1546
+ },
1547
+ {
1548
+ "epoch": 0.84,
1549
+ "learning_rate": 0.0002,
1550
+ "loss": 1.5694,
1551
+ "step": 514
1552
+ },
1553
+ {
1554
+ "epoch": 0.84,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 1.5924,
1557
+ "step": 516
1558
+ },
1559
+ {
1560
+ "epoch": 0.84,
1561
+ "learning_rate": 0.0002,
1562
+ "loss": 1.5662,
1563
+ "step": 518
1564
+ },
1565
+ {
1566
+ "epoch": 0.85,
1567
+ "learning_rate": 0.0002,
1568
+ "loss": 1.6818,
1569
+ "step": 520
1570
+ },
1571
+ {
1572
+ "epoch": 0.85,
1573
+ "learning_rate": 0.0002,
1574
+ "loss": 1.597,
1575
+ "step": 522
1576
+ },
1577
+ {
1578
+ "epoch": 0.85,
1579
+ "learning_rate": 0.0002,
1580
+ "loss": 1.4934,
1581
+ "step": 524
1582
+ },
1583
+ {
1584
+ "epoch": 0.86,
1585
+ "learning_rate": 0.0002,
1586
+ "loss": 1.5606,
1587
+ "step": 526
1588
+ },
1589
+ {
1590
+ "epoch": 0.86,
1591
+ "learning_rate": 0.0002,
1592
+ "loss": 1.65,
1593
+ "step": 528
1594
+ },
1595
+ {
1596
+ "epoch": 0.86,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 1.6129,
1599
+ "step": 530
1600
+ },
1601
+ {
1602
+ "epoch": 0.87,
1603
+ "learning_rate": 0.0002,
1604
+ "loss": 1.6428,
1605
+ "step": 532
1606
+ },
1607
+ {
1608
+ "epoch": 0.87,
1609
+ "learning_rate": 0.0002,
1610
+ "loss": 1.749,
1611
+ "step": 534
1612
+ },
1613
+ {
1614
+ "epoch": 0.87,
1615
+ "learning_rate": 0.0002,
1616
+ "loss": 1.8281,
1617
+ "step": 536
1618
+ },
1619
+ {
1620
+ "epoch": 0.88,
1621
+ "learning_rate": 0.0002,
1622
+ "loss": 1.8625,
1623
+ "step": 538
1624
+ },
1625
+ {
1626
+ "epoch": 0.88,
1627
+ "learning_rate": 0.0002,
1628
+ "loss": 1.7948,
1629
+ "step": 540
1630
+ },
1631
+ {
1632
+ "epoch": 0.88,
1633
+ "learning_rate": 0.0002,
1634
+ "loss": 1.7721,
1635
+ "step": 542
1636
+ },
1637
+ {
1638
+ "epoch": 0.89,
1639
+ "learning_rate": 0.0002,
1640
+ "loss": 1.754,
1641
+ "step": 544
1642
+ },
1643
+ {
1644
+ "epoch": 0.89,
1645
+ "learning_rate": 0.0002,
1646
+ "loss": 1.6903,
1647
+ "step": 546
1648
+ },
1649
+ {
1650
+ "epoch": 0.89,
1651
+ "learning_rate": 0.0002,
1652
+ "loss": 1.6885,
1653
+ "step": 548
1654
+ },
1655
+ {
1656
+ "epoch": 0.9,
1657
+ "learning_rate": 0.0002,
1658
+ "loss": 1.2445,
1659
+ "step": 550
1660
+ },
1661
+ {
1662
+ "epoch": 0.9,
1663
+ "learning_rate": 0.0002,
1664
+ "loss": 1.5882,
1665
+ "step": 552
1666
+ },
1667
+ {
1668
+ "epoch": 0.9,
1669
+ "learning_rate": 0.0002,
1670
+ "loss": 1.5998,
1671
+ "step": 554
1672
+ },
1673
+ {
1674
+ "epoch": 0.91,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 1.5478,
1677
+ "step": 556
1678
+ },
1679
+ {
1680
+ "epoch": 0.91,
1681
+ "learning_rate": 0.0002,
1682
+ "loss": 1.5459,
1683
+ "step": 558
1684
+ },
1685
+ {
1686
+ "epoch": 0.91,
1687
+ "learning_rate": 0.0002,
1688
+ "loss": 1.4364,
1689
+ "step": 560
1690
+ },
1691
+ {
1692
+ "epoch": 0.92,
1693
+ "learning_rate": 0.0002,
1694
+ "loss": 1.6224,
1695
+ "step": 562
1696
+ },
1697
+ {
1698
+ "epoch": 0.92,
1699
+ "learning_rate": 0.0002,
1700
+ "loss": 1.6231,
1701
+ "step": 564
1702
+ },
1703
+ {
1704
+ "epoch": 0.92,
1705
+ "learning_rate": 0.0002,
1706
+ "loss": 1.7122,
1707
+ "step": 566
1708
+ },
1709
+ {
1710
+ "epoch": 0.93,
1711
+ "learning_rate": 0.0002,
1712
+ "loss": 1.5924,
1713
+ "step": 568
1714
+ },
1715
+ {
1716
+ "epoch": 0.93,
1717
+ "learning_rate": 0.0002,
1718
+ "loss": 1.5887,
1719
+ "step": 570
1720
+ },
1721
+ {
1722
+ "epoch": 0.93,
1723
+ "learning_rate": 0.0002,
1724
+ "loss": 1.5342,
1725
+ "step": 572
1726
+ },
1727
+ {
1728
+ "epoch": 0.93,
1729
+ "learning_rate": 0.0002,
1730
+ "loss": 1.5421,
1731
+ "step": 574
1732
+ },
1733
+ {
1734
+ "epoch": 0.94,
1735
+ "learning_rate": 0.0002,
1736
+ "loss": 1.4875,
1737
+ "step": 576
1738
+ },
1739
+ {
1740
+ "epoch": 0.94,
1741
+ "learning_rate": 0.0002,
1742
+ "loss": 1.7105,
1743
+ "step": 578
1744
+ },
1745
+ {
1746
+ "epoch": 0.94,
1747
+ "learning_rate": 0.0002,
1748
+ "loss": 1.7716,
1749
+ "step": 580
1750
+ },
1751
+ {
1752
+ "epoch": 0.95,
1753
+ "learning_rate": 0.0002,
1754
+ "loss": 1.6903,
1755
+ "step": 582
1756
+ },
1757
+ {
1758
+ "epoch": 0.95,
1759
+ "learning_rate": 0.0002,
1760
+ "loss": 1.7758,
1761
+ "step": 584
1762
+ },
1763
+ {
1764
+ "epoch": 0.95,
1765
+ "learning_rate": 0.0002,
1766
+ "loss": 1.7753,
1767
+ "step": 586
1768
+ },
1769
+ {
1770
+ "epoch": 0.96,
1771
+ "learning_rate": 0.0002,
1772
+ "loss": 1.8266,
1773
+ "step": 588
1774
+ },
1775
+ {
1776
+ "epoch": 0.96,
1777
+ "learning_rate": 0.0002,
1778
+ "loss": 1.819,
1779
+ "step": 590
1780
+ },
1781
+ {
1782
+ "epoch": 0.96,
1783
+ "learning_rate": 0.0002,
1784
+ "loss": 1.8032,
1785
+ "step": 592
1786
+ },
1787
+ {
1788
+ "epoch": 0.97,
1789
+ "learning_rate": 0.0002,
1790
+ "loss": 1.8289,
1791
+ "step": 594
1792
+ },
1793
+ {
1794
+ "epoch": 0.97,
1795
+ "learning_rate": 0.0002,
1796
+ "loss": 1.797,
1797
+ "step": 596
1798
+ },
1799
+ {
1800
+ "epoch": 0.97,
1801
+ "learning_rate": 0.0002,
1802
+ "loss": 1.708,
1803
+ "step": 598
1804
+ },
1805
+ {
1806
+ "epoch": 0.98,
1807
+ "learning_rate": 0.0002,
1808
+ "loss": 1.2649,
1809
+ "step": 600
1810
+ },
1811
+ {
1812
+ "epoch": 0.98,
1813
+ "learning_rate": 0.0002,
1814
+ "loss": 1.517,
1815
+ "step": 602
1816
+ },
1817
+ {
1818
+ "epoch": 0.98,
1819
+ "learning_rate": 0.0002,
1820
+ "loss": 1.5548,
1821
+ "step": 604
1822
+ },
1823
+ {
1824
+ "epoch": 0.99,
1825
+ "learning_rate": 0.0002,
1826
+ "loss": 1.5797,
1827
+ "step": 606
1828
+ },
1829
+ {
1830
+ "epoch": 0.99,
1831
+ "learning_rate": 0.0002,
1832
+ "loss": 1.7261,
1833
+ "step": 608
1834
+ },
1835
+ {
1836
+ "epoch": 0.99,
1837
+ "learning_rate": 0.0002,
1838
+ "loss": 1.6101,
1839
+ "step": 610
1840
+ },
1841
+ {
1842
+ "epoch": 1.0,
1843
+ "learning_rate": 0.0002,
1844
+ "loss": 1.9315,
1845
+ "step": 612
1846
+ }
1847
+ ],
1848
+ "logging_steps": 2,
1849
+ "max_steps": 613,
1850
+ "num_input_tokens_seen": 0,
1851
+ "num_train_epochs": 1,
1852
+ "save_steps": 500,
1853
+ "total_flos": 2.371840324637491e+16,
1854
+ "train_batch_size": 1,
1855
+ "trial_name": null,
1856
+ "trial_params": null
1857
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dae637b213c7868c883c9c20ee378fafe36e3e92ccf2183a41716a6e29d0981e
3
+ size 4728