File size: 4,363 Bytes
386094d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
base_model: unsloth/Mistral-Small-Instruct-2409
library_name: peft
tags:
- axolotl
- generated_from_trainer
model-index:
- name: mistral-small-dampf-qlora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess ms-creative.yml
# accelerate launch -m axolotl.cli.train ms-creative.yml
# python -m axolotl.cli.merge_lora ms-creative.yml
# huggingface-cli upload Columbidae/ms-type2-creative train-workspace/merged . --private
# Model
base_model: unsloth/Mistral-Small-Instruct-2409
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:
# Output
output_dir: ./ms-creative
hub_model_id: BeaverAI/mistral-small-dampf-qlora
hub_strategy: "checkpoint"
resume_from_checkpoint:
saves_per_epoch: 5
# Data
sequence_len: 16384 # fits
min_sample_len: 128
dataset_prepared_path: last_run_prepared
datasets:
- path: Dampfinchen/Creative_Writing_Multiturn
type: custommistralv3
warmup_steps: 20
shuffle_merged_datasets: true
sample_packing: true
pad_to_sequence_len: true
# Batching
num_epochs: 1
gradient_accumulation_steps: 1
micro_batch_size: 5
eval_batch_size: 5
# Evaluation
val_set_size: 100
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
save_safetensors: true
mlflow_tracking_uri: http://127.0.0.1:7860
mlflow_experiment_name: Default
# WandB
#wandb_project: Mistral-Small-Creative-Multiturn
#wandb_entity:
gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
use_reentrant: true
unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
# LoRA
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 128
lora_dropout: 0.125
lora_target_linear:
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
# Optimizer
optimizer: paged_adamw_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00005
cosine_min_lr_ratio: 0.1
weight_decay: 0.01
max_grad_norm: 1.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: deepspeed_configs/zero3.json # previously blank
fsdp:
fsdp_config:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
```
</details><br>
# mistral-small-dampf-qlora
This model is a fine-tuned version of [unsloth/Mistral-Small-Instruct-2409](https://huggingface.co/unsloth/Mistral-Small-Instruct-2409) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0232
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- total_train_batch_size: 30
- total_eval_batch_size: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.477 | 0.0065 | 1 | 1.3211 |
| 1.2338 | 0.2065 | 32 | 1.1156 |
| 1.1973 | 0.4129 | 64 | 1.0707 |
| 1.301 | 0.6194 | 96 | 1.0402 |
| 1.1063 | 0.8258 | 128 | 1.0232 |
### Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.0 |