Md Mushfiqur Rahman
commited on
Commit
·
4f97404
1
Parent(s):
81a7baa
Upload with huggingface_hub
Browse files- README.md +39 -0
- config.json +48 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- test_predictions.txt +0 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- trainer_state.json +529 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
---
|
6 |
+
|
7 |
+
# BERT multilingual base model (cased)
|
8 |
+
|
9 |
+
Pretrained model on the English dataset using a masked language modeling (MLM) objective.
|
10 |
+
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
|
11 |
+
[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference
|
12 |
+
between english and English.
|
13 |
+
|
14 |
+
## Model description
|
15 |
+
|
16 |
+
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means
|
17 |
+
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
|
18 |
+
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
|
19 |
+
was pretrained with two objectives:
|
20 |
+
|
21 |
+
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
|
22 |
+
the entire masked sentence through the model and has to predict the masked words. This is different from traditional
|
23 |
+
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
|
24 |
+
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
|
25 |
+
sentence.
|
26 |
+
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
|
27 |
+
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
|
28 |
+
predict if the two sentences were following each other or not.
|
29 |
+
|
30 |
+
The pretrained model has been finetuned for one specific language for one specific task.
|
31 |
+
|
32 |
+
### How to use
|
33 |
+
|
34 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import BertTokenizer, BertModel
|
38 |
+
model = BertModel.from_pretrained("mushfiqur11/<repo_name>")
|
39 |
+
```
|
config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-cased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "O",
|
14 |
+
"1": "B-DATE",
|
15 |
+
"2": "I-DATE",
|
16 |
+
"3": "B-PER",
|
17 |
+
"4": "I-PER",
|
18 |
+
"5": "B-ORG",
|
19 |
+
"6": "I-ORG",
|
20 |
+
"7": "B-LOC",
|
21 |
+
"8": "I-LOC"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"B-DATE": 1,
|
27 |
+
"B-LOC": 7,
|
28 |
+
"B-ORG": 5,
|
29 |
+
"B-PER": 3,
|
30 |
+
"I-DATE": 2,
|
31 |
+
"I-LOC": 8,
|
32 |
+
"I-ORG": 6,
|
33 |
+
"I-PER": 4,
|
34 |
+
"O": 0
|
35 |
+
},
|
36 |
+
"layer_norm_eps": 1e-12,
|
37 |
+
"max_position_embeddings": 512,
|
38 |
+
"model_type": "bert",
|
39 |
+
"num_attention_heads": 12,
|
40 |
+
"num_hidden_layers": 12,
|
41 |
+
"pad_token_id": 0,
|
42 |
+
"position_embedding_type": "absolute",
|
43 |
+
"torch_dtype": "float32",
|
44 |
+
"transformers_version": "4.17.0",
|
45 |
+
"type_vocab_size": 2,
|
46 |
+
"use_cache": true,
|
47 |
+
"vocab_size": 28996
|
48 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90a349e716b59236383a65165a4fddf715ca1a82fb5c9fb7f4e2603554be2fb9
|
3 |
+
size 430992429
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "add_prefix_space": false, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-cased", "tokenizer_class": "BertTokenizer"}
|
trainer_state.json
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.7776904948939514,
|
3 |
+
"best_model_checkpoint": "/scratch/mrahma45/pixel/finetuned_models/bert/bert-base-finetuned-masakhaner-kin/checkpoint-6000",
|
4 |
+
"epoch": 104.4776119402985,
|
5 |
+
"global_step": 7000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 2.99,
|
12 |
+
"eval_accuracy_score": 0.9532111458798986,
|
13 |
+
"eval_f1": 0.7152000000000002,
|
14 |
+
"eval_loss": 0.1510487049818039,
|
15 |
+
"eval_precision": 0.7072784810126582,
|
16 |
+
"eval_recall": 0.7233009708737864,
|
17 |
+
"eval_runtime": 4.2168,
|
18 |
+
"eval_samples_per_second": 71.618,
|
19 |
+
"eval_steps_per_second": 9.011,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 5.97,
|
24 |
+
"eval_accuracy_score": 0.9599165549098495,
|
25 |
+
"eval_f1": 0.7722308892355694,
|
26 |
+
"eval_loss": 0.14730291068553925,
|
27 |
+
"eval_precision": 0.7454819277108434,
|
28 |
+
"eval_recall": 0.8009708737864077,
|
29 |
+
"eval_runtime": 4.2242,
|
30 |
+
"eval_samples_per_second": 71.493,
|
31 |
+
"eval_steps_per_second": 8.996,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 7.46,
|
36 |
+
"learning_rate": 4.865771812080537e-05,
|
37 |
+
"loss": 0.1459,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 8.96,
|
42 |
+
"eval_accuracy_score": 0.9578304276560871,
|
43 |
+
"eval_f1": 0.7629513343799057,
|
44 |
+
"eval_loss": 0.20204676687717438,
|
45 |
+
"eval_precision": 0.7408536585365854,
|
46 |
+
"eval_recall": 0.7864077669902912,
|
47 |
+
"eval_runtime": 4.2219,
|
48 |
+
"eval_samples_per_second": 71.532,
|
49 |
+
"eval_steps_per_second": 9.001,
|
50 |
+
"step": 600
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 11.94,
|
54 |
+
"eval_accuracy_score": 0.950081954999255,
|
55 |
+
"eval_f1": 0.730829420970266,
|
56 |
+
"eval_loss": 0.2434845268726349,
|
57 |
+
"eval_precision": 0.7075757575757575,
|
58 |
+
"eval_recall": 0.7556634304207119,
|
59 |
+
"eval_runtime": 4.2229,
|
60 |
+
"eval_samples_per_second": 71.516,
|
61 |
+
"eval_steps_per_second": 8.999,
|
62 |
+
"step": 800
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 14.93,
|
66 |
+
"learning_rate": 4.697986577181208e-05,
|
67 |
+
"loss": 0.0052,
|
68 |
+
"step": 1000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 14.93,
|
72 |
+
"eval_accuracy_score": 0.955893309491879,
|
73 |
+
"eval_f1": 0.7670136108887109,
|
74 |
+
"eval_loss": 0.25165775418281555,
|
75 |
+
"eval_precision": 0.7591125198098256,
|
76 |
+
"eval_recall": 0.7750809061488673,
|
77 |
+
"eval_runtime": 4.2133,
|
78 |
+
"eval_samples_per_second": 71.679,
|
79 |
+
"eval_steps_per_second": 9.019,
|
80 |
+
"step": 1000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 17.91,
|
84 |
+
"eval_accuracy_score": 0.9544032185963344,
|
85 |
+
"eval_f1": 0.7628865979381443,
|
86 |
+
"eval_loss": 0.2373453825712204,
|
87 |
+
"eval_precision": 0.7480559875583204,
|
88 |
+
"eval_recall": 0.7783171521035599,
|
89 |
+
"eval_runtime": 4.2221,
|
90 |
+
"eval_samples_per_second": 71.528,
|
91 |
+
"eval_steps_per_second": 9.0,
|
92 |
+
"step": 1200
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 20.9,
|
96 |
+
"eval_accuracy_score": 0.9527641186112353,
|
97 |
+
"eval_f1": 0.7570532915360502,
|
98 |
+
"eval_loss": 0.2740270793437958,
|
99 |
+
"eval_precision": 0.7340425531914894,
|
100 |
+
"eval_recall": 0.7815533980582524,
|
101 |
+
"eval_runtime": 4.2179,
|
102 |
+
"eval_samples_per_second": 71.599,
|
103 |
+
"eval_steps_per_second": 9.009,
|
104 |
+
"step": 1400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 22.39,
|
108 |
+
"learning_rate": 4.530201342281879e-05,
|
109 |
+
"loss": 0.0028,
|
110 |
+
"step": 1500
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 23.88,
|
114 |
+
"eval_accuracy_score": 0.9506779913574728,
|
115 |
+
"eval_f1": 0.7511520737327189,
|
116 |
+
"eval_loss": 0.29271605610847473,
|
117 |
+
"eval_precision": 0.7149122807017544,
|
118 |
+
"eval_recall": 0.7912621359223301,
|
119 |
+
"eval_runtime": 4.2167,
|
120 |
+
"eval_samples_per_second": 71.619,
|
121 |
+
"eval_steps_per_second": 9.012,
|
122 |
+
"step": 1600
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 26.87,
|
126 |
+
"eval_accuracy_score": 0.953956191327671,
|
127 |
+
"eval_f1": 0.7715654952076678,
|
128 |
+
"eval_loss": 0.27202117443084717,
|
129 |
+
"eval_precision": 0.7618296529968455,
|
130 |
+
"eval_recall": 0.7815533980582524,
|
131 |
+
"eval_runtime": 4.2162,
|
132 |
+
"eval_samples_per_second": 71.629,
|
133 |
+
"eval_steps_per_second": 9.013,
|
134 |
+
"step": 1800
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 29.85,
|
138 |
+
"learning_rate": 4.36241610738255e-05,
|
139 |
+
"loss": 0.0031,
|
140 |
+
"step": 2000
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 29.85,
|
144 |
+
"eval_accuracy_score": 0.9545522276858889,
|
145 |
+
"eval_f1": 0.769352290679305,
|
146 |
+
"eval_loss": 0.3008579909801483,
|
147 |
+
"eval_precision": 0.7515432098765432,
|
148 |
+
"eval_recall": 0.7880258899676376,
|
149 |
+
"eval_runtime": 4.2137,
|
150 |
+
"eval_samples_per_second": 71.671,
|
151 |
+
"eval_steps_per_second": 9.018,
|
152 |
+
"step": 2000
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 32.84,
|
156 |
+
"eval_accuracy_score": 0.9544032185963344,
|
157 |
+
"eval_f1": 0.7775100401606425,
|
158 |
+
"eval_loss": 0.3004043698310852,
|
159 |
+
"eval_precision": 0.7719298245614035,
|
160 |
+
"eval_recall": 0.7831715210355987,
|
161 |
+
"eval_runtime": 4.2226,
|
162 |
+
"eval_samples_per_second": 71.52,
|
163 |
+
"eval_steps_per_second": 8.999,
|
164 |
+
"step": 2200
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 35.82,
|
168 |
+
"eval_accuracy_score": 0.9523170913425719,
|
169 |
+
"eval_f1": 0.7588932806324111,
|
170 |
+
"eval_loss": 0.3016415238380432,
|
171 |
+
"eval_precision": 0.7418856259659969,
|
172 |
+
"eval_recall": 0.7766990291262136,
|
173 |
+
"eval_runtime": 4.2238,
|
174 |
+
"eval_samples_per_second": 71.5,
|
175 |
+
"eval_steps_per_second": 8.997,
|
176 |
+
"step": 2400
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 37.31,
|
180 |
+
"learning_rate": 4.194630872483222e-05,
|
181 |
+
"loss": 0.0022,
|
182 |
+
"step": 2500
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 38.81,
|
186 |
+
"eval_accuracy_score": 0.9551482640441067,
|
187 |
+
"eval_f1": 0.7769897557131599,
|
188 |
+
"eval_loss": 0.2800486385822296,
|
189 |
+
"eval_precision": 0.7572964669738863,
|
190 |
+
"eval_recall": 0.7977346278317152,
|
191 |
+
"eval_runtime": 4.2149,
|
192 |
+
"eval_samples_per_second": 71.651,
|
193 |
+
"eval_steps_per_second": 9.016,
|
194 |
+
"step": 2600
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 41.79,
|
198 |
+
"eval_accuracy_score": 0.9502309640888095,
|
199 |
+
"eval_f1": 0.7396403440187647,
|
200 |
+
"eval_loss": 0.29597747325897217,
|
201 |
+
"eval_precision": 0.7155824508320726,
|
202 |
+
"eval_recall": 0.7653721682847896,
|
203 |
+
"eval_runtime": 4.2274,
|
204 |
+
"eval_samples_per_second": 71.439,
|
205 |
+
"eval_steps_per_second": 8.989,
|
206 |
+
"step": 2800
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 44.78,
|
210 |
+
"learning_rate": 4.026845637583892e-05,
|
211 |
+
"loss": 0.0021,
|
212 |
+
"step": 3000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 44.78,
|
216 |
+
"eval_accuracy_score": 0.953658173148562,
|
217 |
+
"eval_f1": 0.769108280254777,
|
218 |
+
"eval_loss": 0.3028393089771271,
|
219 |
+
"eval_precision": 0.7570532915360502,
|
220 |
+
"eval_recall": 0.7815533980582524,
|
221 |
+
"eval_runtime": 4.2104,
|
222 |
+
"eval_samples_per_second": 71.727,
|
223 |
+
"eval_steps_per_second": 9.025,
|
224 |
+
"step": 3000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 47.76,
|
228 |
+
"eval_accuracy_score": 0.9566383549396513,
|
229 |
+
"eval_f1": 0.7822706065318817,
|
230 |
+
"eval_loss": 0.2665591835975647,
|
231 |
+
"eval_precision": 0.7529940119760479,
|
232 |
+
"eval_recall": 0.813915857605178,
|
233 |
+
"eval_runtime": 4.2247,
|
234 |
+
"eval_samples_per_second": 71.485,
|
235 |
+
"eval_steps_per_second": 8.995,
|
236 |
+
"step": 3200
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 50.75,
|
240 |
+
"eval_accuracy_score": 0.9566383549396513,
|
241 |
+
"eval_f1": 0.7772435897435898,
|
242 |
+
"eval_loss": 0.26991933584213257,
|
243 |
+
"eval_precision": 0.7698412698412699,
|
244 |
+
"eval_recall": 0.7847896440129449,
|
245 |
+
"eval_runtime": 4.2153,
|
246 |
+
"eval_samples_per_second": 71.643,
|
247 |
+
"eval_steps_per_second": 9.015,
|
248 |
+
"step": 3400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 52.24,
|
252 |
+
"learning_rate": 3.859060402684564e-05,
|
253 |
+
"loss": 0.0022,
|
254 |
+
"step": 3500
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 53.73,
|
258 |
+
"eval_accuracy_score": 0.9572343912978691,
|
259 |
+
"eval_f1": 0.7881694644284571,
|
260 |
+
"eval_loss": 0.2740214169025421,
|
261 |
+
"eval_precision": 0.7788309636650869,
|
262 |
+
"eval_recall": 0.7977346278317152,
|
263 |
+
"eval_runtime": 4.2125,
|
264 |
+
"eval_samples_per_second": 71.691,
|
265 |
+
"eval_steps_per_second": 9.021,
|
266 |
+
"step": 3600
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 56.72,
|
270 |
+
"eval_accuracy_score": 0.9563403367605424,
|
271 |
+
"eval_f1": 0.7778643803585348,
|
272 |
+
"eval_loss": 0.2816332280635834,
|
273 |
+
"eval_precision": 0.750375939849624,
|
274 |
+
"eval_recall": 0.8074433656957929,
|
275 |
+
"eval_runtime": 4.2121,
|
276 |
+
"eval_samples_per_second": 71.699,
|
277 |
+
"eval_steps_per_second": 9.022,
|
278 |
+
"step": 3800
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 59.7,
|
282 |
+
"learning_rate": 3.6912751677852356e-05,
|
283 |
+
"loss": 0.0014,
|
284 |
+
"step": 4000
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 59.7,
|
288 |
+
"eval_accuracy_score": 0.9518700640739085,
|
289 |
+
"eval_f1": 0.7486122125297383,
|
290 |
+
"eval_loss": 0.3085213601589203,
|
291 |
+
"eval_precision": 0.7340590979782271,
|
292 |
+
"eval_recall": 0.7637540453074434,
|
293 |
+
"eval_runtime": 4.2023,
|
294 |
+
"eval_samples_per_second": 71.866,
|
295 |
+
"eval_steps_per_second": 9.043,
|
296 |
+
"step": 4000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 62.69,
|
300 |
+
"eval_accuracy_score": 0.9554462822232156,
|
301 |
+
"eval_f1": 0.7712,
|
302 |
+
"eval_loss": 0.27103257179260254,
|
303 |
+
"eval_precision": 0.7626582278481012,
|
304 |
+
"eval_recall": 0.7799352750809061,
|
305 |
+
"eval_runtime": 4.2088,
|
306 |
+
"eval_samples_per_second": 71.755,
|
307 |
+
"eval_steps_per_second": 9.029,
|
308 |
+
"step": 4200
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 65.67,
|
312 |
+
"eval_accuracy_score": 0.9573834003874236,
|
313 |
+
"eval_f1": 0.7856573705179283,
|
314 |
+
"eval_loss": 0.2769891619682312,
|
315 |
+
"eval_precision": 0.7739403453689168,
|
316 |
+
"eval_recall": 0.7977346278317152,
|
317 |
+
"eval_runtime": 4.2117,
|
318 |
+
"eval_samples_per_second": 71.705,
|
319 |
+
"eval_steps_per_second": 9.022,
|
320 |
+
"step": 4400
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 67.16,
|
324 |
+
"learning_rate": 3.523489932885906e-05,
|
325 |
+
"loss": 0.0017,
|
326 |
+
"step": 4500
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 68.66,
|
330 |
+
"eval_accuracy_score": 0.952019073163463,
|
331 |
+
"eval_f1": 0.765079365079365,
|
332 |
+
"eval_loss": 0.3148031532764435,
|
333 |
+
"eval_precision": 0.7507788161993769,
|
334 |
+
"eval_recall": 0.7799352750809061,
|
335 |
+
"eval_runtime": 4.2067,
|
336 |
+
"eval_samples_per_second": 71.79,
|
337 |
+
"eval_steps_per_second": 9.033,
|
338 |
+
"step": 4600
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 71.64,
|
342 |
+
"eval_accuracy_score": 0.955893309491879,
|
343 |
+
"eval_f1": 0.7903351519875291,
|
344 |
+
"eval_loss": 0.3128798007965088,
|
345 |
+
"eval_precision": 0.762406015037594,
|
346 |
+
"eval_recall": 0.8203883495145631,
|
347 |
+
"eval_runtime": 4.203,
|
348 |
+
"eval_samples_per_second": 71.854,
|
349 |
+
"eval_steps_per_second": 9.041,
|
350 |
+
"step": 4800
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 74.63,
|
354 |
+
"learning_rate": 3.3557046979865775e-05,
|
355 |
+
"loss": 0.0011,
|
356 |
+
"step": 5000
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 74.63,
|
360 |
+
"eval_accuracy_score": 0.9549992549545522,
|
361 |
+
"eval_f1": 0.7678855325914149,
|
362 |
+
"eval_loss": 0.3046160936355591,
|
363 |
+
"eval_precision": 0.7546875,
|
364 |
+
"eval_recall": 0.7815533980582524,
|
365 |
+
"eval_runtime": 4.2139,
|
366 |
+
"eval_samples_per_second": 71.668,
|
367 |
+
"eval_steps_per_second": 9.018,
|
368 |
+
"step": 5000
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 77.61,
|
372 |
+
"eval_accuracy_score": 0.9526151095216808,
|
373 |
+
"eval_f1": 0.749407114624506,
|
374 |
+
"eval_loss": 0.3481159210205078,
|
375 |
+
"eval_precision": 0.732612055641422,
|
376 |
+
"eval_recall": 0.7669902912621359,
|
377 |
+
"eval_runtime": 4.2066,
|
378 |
+
"eval_samples_per_second": 71.791,
|
379 |
+
"eval_steps_per_second": 9.033,
|
380 |
+
"step": 5200
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 80.6,
|
384 |
+
"eval_accuracy_score": 0.9479958277454925,
|
385 |
+
"eval_f1": 0.7124999999999999,
|
386 |
+
"eval_loss": 0.3350728154182434,
|
387 |
+
"eval_precision": 0.6888217522658611,
|
388 |
+
"eval_recall": 0.7378640776699029,
|
389 |
+
"eval_runtime": 4.207,
|
390 |
+
"eval_samples_per_second": 71.785,
|
391 |
+
"eval_steps_per_second": 9.033,
|
392 |
+
"step": 5400
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 82.09,
|
396 |
+
"learning_rate": 3.1879194630872485e-05,
|
397 |
+
"loss": 0.0012,
|
398 |
+
"step": 5500
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 83.58,
|
402 |
+
"eval_accuracy_score": 0.9545522276858889,
|
403 |
+
"eval_f1": 0.7642799678197908,
|
404 |
+
"eval_loss": 0.32919129729270935,
|
405 |
+
"eval_precision": 0.76,
|
406 |
+
"eval_recall": 0.7686084142394822,
|
407 |
+
"eval_runtime": 4.2057,
|
408 |
+
"eval_samples_per_second": 71.807,
|
409 |
+
"eval_steps_per_second": 9.035,
|
410 |
+
"step": 5600
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 86.57,
|
414 |
+
"eval_accuracy_score": 0.9547012367754433,
|
415 |
+
"eval_f1": 0.779552715654952,
|
416 |
+
"eval_loss": 0.3345593214035034,
|
417 |
+
"eval_precision": 0.7697160883280757,
|
418 |
+
"eval_recall": 0.7896440129449838,
|
419 |
+
"eval_runtime": 4.208,
|
420 |
+
"eval_samples_per_second": 71.767,
|
421 |
+
"eval_steps_per_second": 9.03,
|
422 |
+
"step": 5800
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 89.55,
|
426 |
+
"learning_rate": 3.02013422818792e-05,
|
427 |
+
"loss": 0.0008,
|
428 |
+
"step": 6000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 89.55,
|
432 |
+
"eval_accuracy_score": 0.9542542095067799,
|
433 |
+
"eval_f1": 0.7776904948939514,
|
434 |
+
"eval_loss": 0.3138931095600128,
|
435 |
+
"eval_precision": 0.7557251908396947,
|
436 |
+
"eval_recall": 0.8009708737864077,
|
437 |
+
"eval_runtime": 4.2007,
|
438 |
+
"eval_samples_per_second": 71.892,
|
439 |
+
"eval_steps_per_second": 9.046,
|
440 |
+
"step": 6000
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 92.54,
|
444 |
+
"eval_accuracy_score": 0.9493369095514826,
|
445 |
+
"eval_f1": 0.7448818897637796,
|
446 |
+
"eval_loss": 0.30180272459983826,
|
447 |
+
"eval_precision": 0.7254601226993865,
|
448 |
+
"eval_recall": 0.7653721682847896,
|
449 |
+
"eval_runtime": 4.2104,
|
450 |
+
"eval_samples_per_second": 71.727,
|
451 |
+
"eval_steps_per_second": 9.025,
|
452 |
+
"step": 6200
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 95.52,
|
456 |
+
"eval_accuracy_score": 0.9499329459097005,
|
457 |
+
"eval_f1": 0.7467482785003826,
|
458 |
+
"eval_loss": 0.298985093832016,
|
459 |
+
"eval_precision": 0.7082728592162555,
|
460 |
+
"eval_recall": 0.7896440129449838,
|
461 |
+
"eval_runtime": 4.2098,
|
462 |
+
"eval_samples_per_second": 71.738,
|
463 |
+
"eval_steps_per_second": 9.027,
|
464 |
+
"step": 6400
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 97.01,
|
468 |
+
"learning_rate": 2.8523489932885905e-05,
|
469 |
+
"loss": 0.0013,
|
470 |
+
"step": 6500
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 98.51,
|
474 |
+
"eval_accuracy_score": 0.9485918641037103,
|
475 |
+
"eval_f1": 0.7388932190179269,
|
476 |
+
"eval_loss": 0.35180896520614624,
|
477 |
+
"eval_precision": 0.7127819548872181,
|
478 |
+
"eval_recall": 0.7669902912621359,
|
479 |
+
"eval_runtime": 4.206,
|
480 |
+
"eval_samples_per_second": 71.802,
|
481 |
+
"eval_steps_per_second": 9.035,
|
482 |
+
"step": 6600
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 101.49,
|
486 |
+
"eval_accuracy_score": 0.9490388913723737,
|
487 |
+
"eval_f1": 0.7475409836065574,
|
488 |
+
"eval_loss": 0.3536173403263092,
|
489 |
+
"eval_precision": 0.7574750830564784,
|
490 |
+
"eval_recall": 0.7378640776699029,
|
491 |
+
"eval_runtime": 4.2125,
|
492 |
+
"eval_samples_per_second": 71.692,
|
493 |
+
"eval_steps_per_second": 9.021,
|
494 |
+
"step": 6800
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 104.48,
|
498 |
+
"learning_rate": 2.6845637583892618e-05,
|
499 |
+
"loss": 0.0008,
|
500 |
+
"step": 7000
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 104.48,
|
504 |
+
"eval_accuracy_score": 0.9476978095663835,
|
505 |
+
"eval_f1": 0.7232704402515724,
|
506 |
+
"eval_loss": 0.3082831799983978,
|
507 |
+
"eval_precision": 0.7033639143730887,
|
508 |
+
"eval_recall": 0.7443365695792881,
|
509 |
+
"eval_runtime": 4.205,
|
510 |
+
"eval_samples_per_second": 71.819,
|
511 |
+
"eval_steps_per_second": 9.037,
|
512 |
+
"step": 7000
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 104.48,
|
516 |
+
"step": 7000,
|
517 |
+
"total_flos": 2.888661669588173e+16,
|
518 |
+
"train_loss": 0.01226256138086319,
|
519 |
+
"train_runtime": 7779.0968,
|
520 |
+
"train_samples_per_second": 61.704,
|
521 |
+
"train_steps_per_second": 1.928
|
522 |
+
}
|
523 |
+
],
|
524 |
+
"max_steps": 15000,
|
525 |
+
"num_train_epochs": 224,
|
526 |
+
"total_flos": 2.888661669588173e+16,
|
527 |
+
"trial_name": null,
|
528 |
+
"trial_params": null
|
529 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cef24de69dd3778788eb87660020d78c46bb09cbe7e661286d9e4994f8eb2ad8
|
3 |
+
size 3259
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|