Md Mushfiqur Rahman commited on
Commit
d44aced
·
1 Parent(s): a0526e2

Upload with huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - canine
5
+ - pretrained-on-english-language
6
+ ---
7
+
8
+ ### How to use
9
+
10
+ Here is how to use this model:
11
+
12
+ ```python
13
+ from transformers import CanineModel
14
+ model = CanineModel.from_pretrained('mushfiqur11/<repo name>')
15
+ ```
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 73.53,
3
+ "eval_accuracy_score": 0.9665495432185524,
4
+ "eval_f1": 0.7928669410150893,
5
+ "eval_loss": 0.291377454996109,
6
+ "eval_precision": 0.7831978319783198,
7
+ "eval_recall": 0.8027777777777778,
8
+ "eval_runtime": 4.2304,
9
+ "eval_samples": 305,
10
+ "eval_samples_per_second": 72.097,
11
+ "eval_steps_per_second": 9.219,
12
+ "test_accuracy_score": 0.9614495375954966,
13
+ "test_f1": 0.775235531628533,
14
+ "test_loss": 0.3572275936603546,
15
+ "test_precision": 0.7883211678832117,
16
+ "test_recall": 0.7625772285966461,
17
+ "test_runtime": 8.9266,
18
+ "test_samples": 645,
19
+ "test_samples_per_second": 72.256,
20
+ "test_steps_per_second": 9.074,
21
+ "train_loss": 0.014607224118709565,
22
+ "train_runtime": 5667.0091,
23
+ "train_samples": 2171,
24
+ "train_samples_per_second": 84.701,
25
+ "train_steps_per_second": 2.647
26
+ }
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-DATE",
15
+ "2": "I-DATE",
16
+ "3": "B-PER",
17
+ "4": "I-PER",
18
+ "5": "B-ORG",
19
+ "6": "I-ORG",
20
+ "7": "B-LOC",
21
+ "8": "I-LOC"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "B-DATE": 1,
27
+ "B-LOC": 7,
28
+ "B-ORG": 5,
29
+ "B-PER": 3,
30
+ "I-DATE": 2,
31
+ "I-LOC": 8,
32
+ "I-ORG": 6,
33
+ "I-PER": 4,
34
+ "O": 0
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "max_position_embeddings": 512,
38
+ "model_type": "bert",
39
+ "num_attention_heads": 12,
40
+ "num_hidden_layers": 12,
41
+ "pad_token_id": 0,
42
+ "pooler_fc_size": 768,
43
+ "pooler_num_attention_heads": 12,
44
+ "pooler_num_fc_layers": 3,
45
+ "pooler_size_per_head": 128,
46
+ "pooler_type": "first_token_transform",
47
+ "position_embedding_type": "absolute",
48
+ "torch_dtype": "float32",
49
+ "transformers_version": "4.17.0",
50
+ "type_vocab_size": 2,
51
+ "use_cache": true,
52
+ "vocab_size": 119547
53
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0bae34f3d96cbe791cd848f36c9f69d689a445b2d0d15f8af45239a64ca4390
3
+ size 709165101
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
test_predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "add_prefix_space": false, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-multilingual-cased", "tokenizer_class": "BertTokenizer"}
trainer_state.json ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.7928669410150893,
3
+ "best_model_checkpoint": "/scratch/mrahma45/pixel/finetuned_models/mbert/mbert-base-finetuned-masakhaner-yor/checkpoint-4000",
4
+ "epoch": 73.52941176470588,
5
+ "global_step": 5000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 2.94,
12
+ "eval_accuracy_score": 0.9617709065354884,
13
+ "eval_f1": 0.7467362924281985,
14
+ "eval_loss": 0.16836212575435638,
15
+ "eval_precision": 0.7044334975369458,
16
+ "eval_recall": 0.7944444444444444,
17
+ "eval_runtime": 4.2439,
18
+ "eval_samples_per_second": 71.868,
19
+ "eval_steps_per_second": 9.19,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 5.88,
24
+ "eval_accuracy_score": 0.9564300773014758,
25
+ "eval_f1": 0.7172774869109947,
26
+ "eval_loss": 0.20965266227722168,
27
+ "eval_precision": 0.6782178217821783,
28
+ "eval_recall": 0.7611111111111111,
29
+ "eval_runtime": 4.2334,
30
+ "eval_samples_per_second": 72.046,
31
+ "eval_steps_per_second": 9.212,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 7.35,
36
+ "learning_rate": 4.865771812080537e-05,
37
+ "loss": 0.1207,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 8.82,
42
+ "eval_accuracy_score": 0.9651440618411806,
43
+ "eval_f1": 0.7470198675496688,
44
+ "eval_loss": 0.19184653460979462,
45
+ "eval_precision": 0.7139240506329114,
46
+ "eval_recall": 0.7833333333333333,
47
+ "eval_runtime": 4.2345,
48
+ "eval_samples_per_second": 72.028,
49
+ "eval_steps_per_second": 9.21,
50
+ "step": 600
51
+ },
52
+ {
53
+ "epoch": 11.76,
54
+ "eval_accuracy_score": 0.9675333801827126,
55
+ "eval_f1": 0.7758389261744967,
56
+ "eval_loss": 0.20845761895179749,
57
+ "eval_precision": 0.7506493506493507,
58
+ "eval_recall": 0.8027777777777778,
59
+ "eval_runtime": 4.2327,
60
+ "eval_samples_per_second": 72.058,
61
+ "eval_steps_per_second": 9.214,
62
+ "step": 800
63
+ },
64
+ {
65
+ "epoch": 14.71,
66
+ "learning_rate": 4.697986577181208e-05,
67
+ "loss": 0.0064,
68
+ "step": 1000
69
+ },
70
+ {
71
+ "epoch": 14.71,
72
+ "eval_accuracy_score": 0.9676739283204497,
73
+ "eval_f1": 0.768,
74
+ "eval_loss": 0.20797914266586304,
75
+ "eval_precision": 0.7384615384615385,
76
+ "eval_recall": 0.8,
77
+ "eval_runtime": 4.225,
78
+ "eval_samples_per_second": 72.189,
79
+ "eval_steps_per_second": 9.231,
80
+ "step": 1000
81
+ },
82
+ {
83
+ "epoch": 17.65,
84
+ "eval_accuracy_score": 0.9612087139845397,
85
+ "eval_f1": 0.7708609271523178,
86
+ "eval_loss": 0.2564171552658081,
87
+ "eval_precision": 0.7367088607594937,
88
+ "eval_recall": 0.8083333333333333,
89
+ "eval_runtime": 4.2295,
90
+ "eval_samples_per_second": 72.112,
91
+ "eval_steps_per_second": 9.221,
92
+ "step": 1200
93
+ },
94
+ {
95
+ "epoch": 20.59,
96
+ "eval_accuracy_score": 0.967111735769501,
97
+ "eval_f1": 0.7891156462585034,
98
+ "eval_loss": 0.2191239595413208,
99
+ "eval_precision": 0.7733333333333333,
100
+ "eval_recall": 0.8055555555555556,
101
+ "eval_runtime": 4.2308,
102
+ "eval_samples_per_second": 72.09,
103
+ "eval_steps_per_second": 9.218,
104
+ "step": 1400
105
+ },
106
+ {
107
+ "epoch": 22.06,
108
+ "learning_rate": 4.530201342281879e-05,
109
+ "loss": 0.0037,
110
+ "step": 1500
111
+ },
112
+ {
113
+ "epoch": 23.53,
114
+ "eval_accuracy_score": 0.9680955727336613,
115
+ "eval_f1": 0.7924016282225237,
116
+ "eval_loss": 0.213937446475029,
117
+ "eval_precision": 0.7745358090185677,
118
+ "eval_recall": 0.8111111111111111,
119
+ "eval_runtime": 4.2289,
120
+ "eval_samples_per_second": 72.122,
121
+ "eval_steps_per_second": 9.222,
122
+ "step": 1600
123
+ },
124
+ {
125
+ "epoch": 26.47,
126
+ "eval_accuracy_score": 0.9631763879128602,
127
+ "eval_f1": 0.7652645861601086,
128
+ "eval_loss": 0.2679533362388611,
129
+ "eval_precision": 0.7480106100795756,
130
+ "eval_recall": 0.7833333333333333,
131
+ "eval_runtime": 4.2299,
132
+ "eval_samples_per_second": 72.106,
133
+ "eval_steps_per_second": 9.22,
134
+ "step": 1800
135
+ },
136
+ {
137
+ "epoch": 29.41,
138
+ "learning_rate": 4.36241610738255e-05,
139
+ "loss": 0.0033,
140
+ "step": 2000
141
+ },
142
+ {
143
+ "epoch": 29.41,
144
+ "eval_accuracy_score": 0.9633169360505973,
145
+ "eval_f1": 0.7709190672153635,
146
+ "eval_loss": 0.2611113488674164,
147
+ "eval_precision": 0.7615176151761518,
148
+ "eval_recall": 0.7805555555555556,
149
+ "eval_runtime": 4.2112,
150
+ "eval_samples_per_second": 72.426,
151
+ "eval_steps_per_second": 9.261,
152
+ "step": 2000
153
+ },
154
+ {
155
+ "epoch": 32.35,
156
+ "eval_accuracy_score": 0.9657062543921293,
157
+ "eval_f1": 0.7735099337748345,
158
+ "eval_loss": 0.2416420429944992,
159
+ "eval_precision": 0.739240506329114,
160
+ "eval_recall": 0.8111111111111111,
161
+ "eval_runtime": 4.2178,
162
+ "eval_samples_per_second": 72.312,
163
+ "eval_steps_per_second": 9.246,
164
+ "step": 2200
165
+ },
166
+ {
167
+ "epoch": 35.29,
168
+ "eval_accuracy_score": 0.9575544624033732,
169
+ "eval_f1": 0.7470198675496688,
170
+ "eval_loss": 0.26062682271003723,
171
+ "eval_precision": 0.7139240506329114,
172
+ "eval_recall": 0.7833333333333333,
173
+ "eval_runtime": 4.2283,
174
+ "eval_samples_per_second": 72.134,
175
+ "eval_steps_per_second": 9.224,
176
+ "step": 2400
177
+ },
178
+ {
179
+ "epoch": 36.76,
180
+ "learning_rate": 4.194630872483222e-05,
181
+ "loss": 0.0033,
182
+ "step": 2500
183
+ },
184
+ {
185
+ "epoch": 38.24,
186
+ "eval_accuracy_score": 0.9621925509486999,
187
+ "eval_f1": 0.7560321715817695,
188
+ "eval_loss": 0.2517440915107727,
189
+ "eval_precision": 0.7305699481865285,
190
+ "eval_recall": 0.7833333333333333,
191
+ "eval_runtime": 4.221,
192
+ "eval_samples_per_second": 72.257,
193
+ "eval_steps_per_second": 9.239,
194
+ "step": 2600
195
+ },
196
+ {
197
+ "epoch": 41.18,
198
+ "eval_accuracy_score": 0.9619114546732256,
199
+ "eval_f1": 0.7779273216689098,
200
+ "eval_loss": 0.25837406516075134,
201
+ "eval_precision": 0.7545691906005222,
202
+ "eval_recall": 0.8027777777777778,
203
+ "eval_runtime": 4.2231,
204
+ "eval_samples_per_second": 72.221,
205
+ "eval_steps_per_second": 9.235,
206
+ "step": 2800
207
+ },
208
+ {
209
+ "epoch": 44.12,
210
+ "learning_rate": 4.026845637583892e-05,
211
+ "loss": 0.0021,
212
+ "step": 3000
213
+ },
214
+ {
215
+ "epoch": 44.12,
216
+ "eval_accuracy_score": 0.9619114546732256,
217
+ "eval_f1": 0.7852257181942545,
218
+ "eval_loss": 0.2560689449310303,
219
+ "eval_precision": 0.7735849056603774,
220
+ "eval_recall": 0.7972222222222223,
221
+ "eval_runtime": 4.2232,
222
+ "eval_samples_per_second": 72.22,
223
+ "eval_steps_per_second": 9.235,
224
+ "step": 3000
225
+ },
226
+ {
227
+ "epoch": 47.06,
228
+ "eval_accuracy_score": 0.9631763879128602,
229
+ "eval_f1": 0.757123473541384,
230
+ "eval_loss": 0.24956972897052765,
231
+ "eval_precision": 0.7400530503978779,
232
+ "eval_recall": 0.775,
233
+ "eval_runtime": 4.2237,
234
+ "eval_samples_per_second": 72.212,
235
+ "eval_steps_per_second": 9.234,
236
+ "step": 3200
237
+ },
238
+ {
239
+ "epoch": 50.0,
240
+ "eval_accuracy_score": 0.9655657062543921,
241
+ "eval_f1": 0.7722222222222223,
242
+ "eval_loss": 0.28158125281333923,
243
+ "eval_precision": 0.7722222222222223,
244
+ "eval_recall": 0.7722222222222223,
245
+ "eval_runtime": 4.2211,
246
+ "eval_samples_per_second": 72.256,
247
+ "eval_steps_per_second": 9.239,
248
+ "step": 3400
249
+ },
250
+ {
251
+ "epoch": 51.47,
252
+ "learning_rate": 3.859060402684564e-05,
253
+ "loss": 0.002,
254
+ "step": 3500
255
+ },
256
+ {
257
+ "epoch": 52.94,
258
+ "eval_accuracy_score": 0.9645818692902319,
259
+ "eval_f1": 0.772117962466488,
260
+ "eval_loss": 0.24671129882335663,
261
+ "eval_precision": 0.7461139896373057,
262
+ "eval_recall": 0.8,
263
+ "eval_runtime": 4.2219,
264
+ "eval_samples_per_second": 72.243,
265
+ "eval_steps_per_second": 9.238,
266
+ "step": 3600
267
+ },
268
+ {
269
+ "epoch": 55.88,
270
+ "eval_accuracy_score": 0.9659873506676037,
271
+ "eval_f1": 0.7923497267759563,
272
+ "eval_loss": 0.2602536678314209,
273
+ "eval_precision": 0.7795698924731183,
274
+ "eval_recall": 0.8055555555555556,
275
+ "eval_runtime": 4.2241,
276
+ "eval_samples_per_second": 72.205,
277
+ "eval_steps_per_second": 9.233,
278
+ "step": 3800
279
+ },
280
+ {
281
+ "epoch": 58.82,
282
+ "learning_rate": 3.6912751677852356e-05,
283
+ "loss": 0.0013,
284
+ "step": 4000
285
+ },
286
+ {
287
+ "epoch": 58.82,
288
+ "eval_accuracy_score": 0.9665495432185524,
289
+ "eval_f1": 0.7928669410150893,
290
+ "eval_loss": 0.291377454996109,
291
+ "eval_precision": 0.7831978319783198,
292
+ "eval_recall": 0.8027777777777778,
293
+ "eval_runtime": 4.2136,
294
+ "eval_samples_per_second": 72.384,
295
+ "eval_steps_per_second": 9.256,
296
+ "step": 4000
297
+ },
298
+ {
299
+ "epoch": 61.76,
300
+ "eval_accuracy_score": 0.9658468025298664,
301
+ "eval_f1": 0.7842605156037992,
302
+ "eval_loss": 0.280934602022171,
303
+ "eval_precision": 0.76657824933687,
304
+ "eval_recall": 0.8027777777777778,
305
+ "eval_runtime": 4.2253,
306
+ "eval_samples_per_second": 72.183,
307
+ "eval_steps_per_second": 9.23,
308
+ "step": 4200
309
+ },
310
+ {
311
+ "epoch": 64.71,
312
+ "eval_accuracy_score": 0.9621925509486999,
313
+ "eval_f1": 0.7779273216689098,
314
+ "eval_loss": 0.3064756691455841,
315
+ "eval_precision": 0.7545691906005222,
316
+ "eval_recall": 0.8027777777777778,
317
+ "eval_runtime": 4.2222,
318
+ "eval_samples_per_second": 72.237,
319
+ "eval_steps_per_second": 9.237,
320
+ "step": 4400
321
+ },
322
+ {
323
+ "epoch": 66.18,
324
+ "learning_rate": 3.523489932885906e-05,
325
+ "loss": 0.0021,
326
+ "step": 4500
327
+ },
328
+ {
329
+ "epoch": 67.65,
330
+ "eval_accuracy_score": 0.9673928320449754,
331
+ "eval_f1": 0.7667121418826739,
332
+ "eval_loss": 0.2502681016921997,
333
+ "eval_precision": 0.7533512064343163,
334
+ "eval_recall": 0.7805555555555556,
335
+ "eval_runtime": 4.2225,
336
+ "eval_samples_per_second": 72.232,
337
+ "eval_steps_per_second": 9.236,
338
+ "step": 4600
339
+ },
340
+ {
341
+ "epoch": 70.59,
342
+ "eval_accuracy_score": 0.9641602248770204,
343
+ "eval_f1": 0.7788331071913162,
344
+ "eval_loss": 0.2737264335155487,
345
+ "eval_precision": 0.7612732095490716,
346
+ "eval_recall": 0.7972222222222223,
347
+ "eval_runtime": 4.2229,
348
+ "eval_samples_per_second": 72.225,
349
+ "eval_steps_per_second": 9.235,
350
+ "step": 4800
351
+ },
352
+ {
353
+ "epoch": 73.53,
354
+ "learning_rate": 3.3557046979865775e-05,
355
+ "loss": 0.0013,
356
+ "step": 5000
357
+ },
358
+ {
359
+ "epoch": 73.53,
360
+ "eval_accuracy_score": 0.963879128601546,
361
+ "eval_f1": 0.7750677506775068,
362
+ "eval_loss": 0.2737545967102051,
363
+ "eval_precision": 0.7566137566137566,
364
+ "eval_recall": 0.7944444444444444,
365
+ "eval_runtime": 4.2199,
366
+ "eval_samples_per_second": 72.277,
367
+ "eval_steps_per_second": 9.242,
368
+ "step": 5000
369
+ },
370
+ {
371
+ "epoch": 73.53,
372
+ "step": 5000,
373
+ "total_flos": 2.085737378893056e+16,
374
+ "train_loss": 0.014607224118709565,
375
+ "train_runtime": 5667.0091,
376
+ "train_samples_per_second": 84.701,
377
+ "train_steps_per_second": 2.647
378
+ }
379
+ ],
380
+ "max_steps": 15000,
381
+ "num_train_epochs": 221,
382
+ "total_flos": 2.085737378893056e+16,
383
+ "trial_name": null,
384
+ "trial_params": null
385
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88807b0dc9c59c63f2667c1a34e5cd9d39b3a45d23b642bedc26c34c80914d9d
3
+ size 3259
vocab.txt ADDED
The diff for this file is too large to render. See raw diff