leaderboard-pr-bot
commited on
Adding Evaluation Results
Browse filesThis is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
README.md
CHANGED
@@ -1,11 +1,114 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
- zh
|
|
|
6 |
tags:
|
7 |
- finance
|
8 |
- invest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
# **Deepmoney**
|
11 |
|
@@ -295,4 +398,17 @@ raw text,全参数训练。基座采用了长上下文的yi-34b-200k。这对
|
|
295 |
2, 请你设计一套定量方法研究以上新闻对____业产生的影响。并据此说明具体需要使用哪些数据。
|
296 |
3, 请根据以下数据,_____设计一套具体的定量方法定量分析以上新闻对____业产生的影响。
|
297 |
|
298 |
-
其中,第一个问题是主观判断,提取新闻影响的标的。这更多的依赖模型的主观分析能力。然后从第一个回答中提取行业名称(这对于熟悉大模型的人来说,设计一套自动化流程易如反掌),填入第二个问题中,目的是获取定量分析的数据。之所以先问定量方法再数据,是COT的魔法。最后一个问题的回答才是我们真正需要的,这个问题上下文中给了足够多的信息,需要它回复一个确切且具体的定量方法。结合代码编写的模型和函数调用的模型,如果你有一个数据字典完善的宏微观数据库的话,这是完全可以实现的。以上是deepmoney和gpt4的这三步回答,该新闻是20240115北京时间早晨9:35刚刚发生的新闻。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- en
|
4 |
- zh
|
5 |
+
license: apache-2.0
|
6 |
tags:
|
7 |
- finance
|
8 |
- invest
|
9 |
+
model-index:
|
10 |
+
- name: deepmoney-34b-200k-base
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: text-generation
|
14 |
+
name: Text Generation
|
15 |
+
dataset:
|
16 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
17 |
+
type: ai2_arc
|
18 |
+
config: ARC-Challenge
|
19 |
+
split: test
|
20 |
+
args:
|
21 |
+
num_few_shot: 25
|
22 |
+
metrics:
|
23 |
+
- type: acc_norm
|
24 |
+
value: 63.99
|
25 |
+
name: normalized accuracy
|
26 |
+
source:
|
27 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TriadParty/deepmoney-34b-200k-base
|
28 |
+
name: Open LLM Leaderboard
|
29 |
+
- task:
|
30 |
+
type: text-generation
|
31 |
+
name: Text Generation
|
32 |
+
dataset:
|
33 |
+
name: HellaSwag (10-Shot)
|
34 |
+
type: hellaswag
|
35 |
+
split: validation
|
36 |
+
args:
|
37 |
+
num_few_shot: 10
|
38 |
+
metrics:
|
39 |
+
- type: acc_norm
|
40 |
+
value: 83.87
|
41 |
+
name: normalized accuracy
|
42 |
+
source:
|
43 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TriadParty/deepmoney-34b-200k-base
|
44 |
+
name: Open LLM Leaderboard
|
45 |
+
- task:
|
46 |
+
type: text-generation
|
47 |
+
name: Text Generation
|
48 |
+
dataset:
|
49 |
+
name: MMLU (5-Shot)
|
50 |
+
type: cais/mmlu
|
51 |
+
config: all
|
52 |
+
split: test
|
53 |
+
args:
|
54 |
+
num_few_shot: 5
|
55 |
+
metrics:
|
56 |
+
- type: acc
|
57 |
+
value: 74.04
|
58 |
+
name: accuracy
|
59 |
+
source:
|
60 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TriadParty/deepmoney-34b-200k-base
|
61 |
+
name: Open LLM Leaderboard
|
62 |
+
- task:
|
63 |
+
type: text-generation
|
64 |
+
name: Text Generation
|
65 |
+
dataset:
|
66 |
+
name: TruthfulQA (0-shot)
|
67 |
+
type: truthful_qa
|
68 |
+
config: multiple_choice
|
69 |
+
split: validation
|
70 |
+
args:
|
71 |
+
num_few_shot: 0
|
72 |
+
metrics:
|
73 |
+
- type: mc2
|
74 |
+
value: 45.93
|
75 |
+
source:
|
76 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TriadParty/deepmoney-34b-200k-base
|
77 |
+
name: Open LLM Leaderboard
|
78 |
+
- task:
|
79 |
+
type: text-generation
|
80 |
+
name: Text Generation
|
81 |
+
dataset:
|
82 |
+
name: Winogrande (5-shot)
|
83 |
+
type: winogrande
|
84 |
+
config: winogrande_xl
|
85 |
+
split: validation
|
86 |
+
args:
|
87 |
+
num_few_shot: 5
|
88 |
+
metrics:
|
89 |
+
- type: acc
|
90 |
+
value: 81.45
|
91 |
+
name: accuracy
|
92 |
+
source:
|
93 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TriadParty/deepmoney-34b-200k-base
|
94 |
+
name: Open LLM Leaderboard
|
95 |
+
- task:
|
96 |
+
type: text-generation
|
97 |
+
name: Text Generation
|
98 |
+
dataset:
|
99 |
+
name: GSM8k (5-shot)
|
100 |
+
type: gsm8k
|
101 |
+
config: main
|
102 |
+
split: test
|
103 |
+
args:
|
104 |
+
num_few_shot: 5
|
105 |
+
metrics:
|
106 |
+
- type: acc
|
107 |
+
value: 0.0
|
108 |
+
name: accuracy
|
109 |
+
source:
|
110 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TriadParty/deepmoney-34b-200k-base
|
111 |
+
name: Open LLM Leaderboard
|
112 |
---
|
113 |
# **Deepmoney**
|
114 |
|
|
|
398 |
2, 请你设计一套定量方法研究以上新闻对____业产生的影响。并据此说明具体需要使用哪些数据。
|
399 |
3, 请根据以下数据,_____设计一套具体的定量方法定量分析以上新闻对____业产生的影响。
|
400 |
|
401 |
+
其中,第一个问题是主观判断,提取新闻影响的标的。这更多的依赖模型的主观分析能力。然后从第一个回答中提取行业名称(这对于熟悉大模型的人来说,设计一套自动化流程易如反掌),填入第二个问题中,目的是获取定量分析的数据。之所以先问定量方法再数据,是COT的魔法。最后一个问题的回答才是我们真正需要的,这个问题上下文中给了足够多的信息,需要它回复一个确切且具体的定量方法。结合代码编写的模型和函数调用的模型,如果你有一个数据字典完善的宏微观数据库的话,这是完全可以实现的。以上是deepmoney和gpt4的这三步回答,该新闻是20240115北京时间早晨9:35刚刚发生的新闻。
|
402 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
403 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TriadParty__deepmoney-34b-200k-base)
|
404 |
+
|
405 |
+
| Metric |Value|
|
406 |
+
|---------------------------------|----:|
|
407 |
+
|Avg. |58.21|
|
408 |
+
|AI2 Reasoning Challenge (25-Shot)|63.99|
|
409 |
+
|HellaSwag (10-Shot) |83.87|
|
410 |
+
|MMLU (5-Shot) |74.04|
|
411 |
+
|TruthfulQA (0-shot) |45.93|
|
412 |
+
|Winogrande (5-shot) |81.45|
|
413 |
+
|GSM8k (5-shot) | 0.00|
|
414 |
+
|