File size: 7,775 Bytes
5df9747 59463ba 5df9747 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
---
license: creativeml-openrail-m
library_name: transformers
tags:
- deep_think
- reasoning
- chain_of_thought
- chain_of_thinking
- prev_2
- self_reasoning
- llama-cpp
- gguf-my-repo
language:
- en
base_model: prithivMLmods/Llama-Thinker-3B-Preview2
pipeline_tag: text-generation
---
# Triangle104/Llama-Thinker-3B-Preview2-Q4_K_M-GGUF
This model was converted to GGUF format from [`prithivMLmods/Llama-Thinker-3B-Preview2`](https://huggingface.co/prithivMLmods/Llama-Thinker-3B-Preview2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Llama-Thinker-3B-Preview2) for more details on the model.
---
Model details:
-
Llama-Thinker-3B-Preview2 is a pretrained and instruction-tuned
generative model designed for multilingual applications. These models
are trained using synthetic datasets based on long chains of thought,
enabling them to perform complex reasoning tasks effectively.
Model Architecture: [ Based on Llama 3.2 ] is an autoregressive
language model that uses an optimized transformer architecture. The
tuned versions undergo supervised fine-tuning (SFT) and reinforcement
learning with human feedback (RLHF) to align with human preferences for
helpfulness and safety.
Use with transformers
Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.
Make sure to update your transformers installation via pip install --upgrade transformers.
import torch
from transformers import pipeline
model_id = "prithivMLmods/Llama-Thinker-3B-Preview2"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
Note: You can also find detailed recipes on how to use the model locally, with torch.compile(), assisted generations, quantised and more at huggingface-llama-recipes
Use with llama
Please, follow the instructions in the repository
To download Original checkpoints, see the example command below leveraging huggingface-cli:
huggingface-cli download prithivMLmods/Llama-Thinker-3B-Preview2 --include "original/*" --local-dir Llama-Thinker-3B-Preview2
Hereβs a version tailored for the Llama-Thinker-3B-Preview2-GGUF model:
How to Run Llama-Thinker-3B-Preview2 on Ollama Locally
This guide demonstrates how to run the Llama-Thinker-3B-Preview2-GGUF
model locally using Ollama. The model is instruction-tuned for
multilingual tasks and complex reasoning, making it highly versatile for
a wide range of use cases. By the end, you'll be equipped to run this
and other open-source models with ease.
Example 1: How to Run the Llama-Thinker-3B-Preview2 Model
The Llama-Thinker-3B-Preview2 model is a pretrained
and instruction-tuned LLM, designed for complex reasoning tasks across
multiple languages. In this guide, we'll interact with it locally using
Ollama, with support for quantized models.
Step 1: Download the Model
First, download the Llama-Thinker-3B-Preview2-GGUF model using the following command:
ollama run llama-thinker-3b-preview2.gguf
Step 2: Model Initialization and Download
Once the command is executed, Ollama will initialize and download the
necessary model files. You should see output similar to this:
pulling manifest
pulling a12cd3456efg... 100% ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ 3.2 GB
pulling 9f87ghijklmn... 100% ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ 6.5 KB
verifying sha256 digest
writing manifest
removing any unused layers
success
>>> Send a message (/? for help)
Step 3: Interact with the Model
Once the model is fully loaded, you can interact with it by sending prompts. For example, let's ask:
>>> How can you assist me today?
A sample response might look like this [may / maynot be identical]:
I am Llama-Thinker-3B-Preview2, an advanced AI language model designed to assist with complex reasoning, multilingual tasks, and general-purpose queries. Here are a few things I can help you with:
1. Answering complex questions in multiple languages.
2. Assisting with creative writing, content generation, and problem-solving.
3. Providing detailed summaries and explanations.
4. Translating text across different languages.
5. Generating ideas for personal or professional use.
6. Offering insights on technical topics.
Feel free to ask me anything you'd like assistance with!
Step 4: Exit the Program
To exit the program, simply type:
/exit
Example 2: Using Multi-Modal Models (Future Use)
In the future, Ollama may support multi-modal models where you can
input both text and images for advanced interactions. This section will
be updated as new capabilities become available.
Notes on Using Quantized Models
Quantized models like llama-thinker-3b-preview2.gguf
are optimized for efficient performance on local systems with limited
resources. Here are some key points to ensure smooth operation:
VRAM/CPU Requirements: Ensure your system has adequate VRAM or CPU resources to handle model inference.
Model Format: Use the .gguf model format for compatibility with Ollama.
Conclusion
Running the Llama-Thinker-3B-Preview2 model locally
using Ollama provides a powerful way to leverage open-source LLMs for
complex reasoning and multilingual tasks. By following this guide, you
can explore other models and expand your use cases as new models become
available.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q4_K_M-GGUF --hf-file llama-thinker-3b-preview2-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q4_K_M-GGUF --hf-file llama-thinker-3b-preview2-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q4_K_M-GGUF --hf-file llama-thinker-3b-preview2-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Llama-Thinker-3B-Preview2-Q4_K_M-GGUF --hf-file llama-thinker-3b-preview2-q4_k_m.gguf -c 2048
```
|