Triangle104 commited on
Commit
df628cd
·
verified ·
1 Parent(s): 1330e97

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -2
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- license: apache-2.0
3
  language:
4
  - en
5
  metrics:
@@ -15,6 +15,39 @@ base_model: THU-KEG/Llama3-Crab-SFT
15
  This model was converted to GGUF format from [`THU-KEG/Llama3-Crab-SFT`](https://huggingface.co/THU-KEG/Llama3-Crab-SFT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
16
  Refer to the [original model card](https://huggingface.co/THU-KEG/Llama3-Crab-SFT) for more details on the model.
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ## Use with llama.cpp
19
  Install llama.cpp through brew (works on Mac and Linux)
20
 
@@ -53,4 +86,4 @@ Step 3: Run inference through the main binary.
53
  or
54
  ```
55
  ./llama-server --hf-repo Triangle104/Llama3-Crab-SFT-Q5_K_M-GGUF --hf-file llama3-crab-sft-q5_k_m.gguf -c 2048
56
- ```
 
1
  ---
2
+ license: llama3
3
  language:
4
  - en
5
  metrics:
 
15
  This model was converted to GGUF format from [`THU-KEG/Llama3-Crab-SFT`](https://huggingface.co/THU-KEG/Llama3-Crab-SFT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
16
  Refer to the [original model card](https://huggingface.co/THU-KEG/Llama3-Crab-SFT) for more details on the model.
17
 
18
+ ---
19
+ Model details:
20
+ -
21
+ Large language models (LLMs) struggle to follow instructions with complex constraints in format, length, etc. Following the conventional instruction-tuning practice, previous works conduct post-training on complex instruction-response pairs generated by feeding complex instructions to advanced LLMs. However, even advanced LLMs cannot follow complex instructions well, thus limiting the quality of generated data. In this work, we find that existing datasets inherently contain implicit complex constraints and propose a novel data generation technique, constraint back-translation. Specifically, we take the high-quality instruction-response pairs in existing datasets and only adopt advanced LLMs to add complex constraints already met by the responses to the instructions, which naturally reduces costs and data noise. In the experiments, we adopt Llama3-70B-Instruct to back-translate constraints and create a high-quality complex instruction-response dataset, named CRAB. We present that post-training on CRAB improves multiple backbone LLMs' complex instruction-following ability, evaluated on extensive instruction-following benchmarks. We further find that constraint back-translation also serves as a useful auxiliary training objective in post-training.
22
+
23
+ 📖 Paper: Constraint Back-translation Improves Complex Instruction Following of Large Language Models
24
+
25
+ 🦀 Github: THU/Crab
26
+
27
+ Model Performance
28
+ Models BaseModel IFEval FollowBench(HSR) AVG
29
+ AVG L1-L2 L3-L5 AVG
30
+ GPT-3.5-turbo GPT 66.3 74.2 61 66.2 66.3
31
+ GPT-4 GPT 81.3 80.4 69.4 73.8 77.6
32
+ Vicuna-13b-V1.5 Llama2 50.3 66.3 39.8 50.4 50.4
33
+ WizardLM-13B-V1.2 Llama2 51.4 56.5 36.9 44.7 48
34
+ Conifer-13B Llama2 50.2 57.1 40.3 47 48.6
35
+ Zephyr-7B-beta Mistral 45.4 54.8 38.2 44.8 45.1
36
+ Conifer-7B Mistral 53.9 51.9 40.2 44.9 49.4
37
+ Conifer-7B-DPO Mistral 55.7 57 45.4 50 52.9
38
+ Llama3 8B Llama3 31.4 6.8 8.2 7.6 19.5
39
+ Llama3-crab Llama3 46.9 51.2 26.7 36.5 41.7
40
+ Llama3-crab + DPO Llama3 49.7 56.8 38.1 45.5 47.6
41
+ Mistral 7B Mistral 25.2 15.5 6.5 10.1 17.7
42
+ Mistral-crab Mistral 54.5 59.2 32.8 43.3 48.9
43
+ Mistral-crab + DPO Mistral 59.4 59.9 42.5 49.4 54.4
44
+ Model Description
45
+
46
+ Developed by: Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li
47
+ Model type: Text Generation
48
+ Language(s) (NLP): English
49
+ Finetuned from model [optional]: Llama3-8B
50
+
51
  ## Use with llama.cpp
52
  Install llama.cpp through brew (works on Mac and Linux)
53
 
 
86
  or
87
  ```
88
  ./llama-server --hf-repo Triangle104/Llama3-Crab-SFT-Q5_K_M-GGUF --hf-file llama3-crab-sft-q5_k_m.gguf -c 2048
89
+ ```