File size: 2,576 Bytes
27a6650 ddcf2df 27a6650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-14B/blob/main/LICENSE
language:
- en
base_model: rombodawg/Rombos-Coder-V2.5-Qwen-14b
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- qwen
- qwen-coder
- codeqwen
- llama-cpp
- gguf-my-repo
---
# Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_S-GGUF
This model was converted to GGUF format from [`rombodawg/Rombos-Coder-V2.5-Qwen-14b`](https://huggingface.co/rombodawg/Rombos-Coder-V2.5-Qwen-14b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/rombodawg/Rombos-Coder-V2.5-Qwen-14b) for more details on the model.
---
Model details:
-
Rombos-Coder-V2.5-Qwen-14b is a continues finetuned version of Qwen2.5-Coder-14B-Instruct. I took it upon myself to merge the instruct model with the base model myself using the Ties merge method as demonstrated in my own "Continuous Finetuning" method (Linked bellow).
https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing
This version of the model shows higher performance than the original instruct and base models.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_S-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_S-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_S-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_S-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_s.gguf -c 2048
```
|