File size: 3,165 Bytes
b5456a3
 
 
 
 
 
 
 
67df34a
b5456a3
 
 
 
 
 
67df34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5456a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67df34a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
base_model: Silvelter/Yomiel-22B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: apache-2.0
---

# Triangle104/Yomiel-22B-Q5_K_S-GGUF
This model was converted to GGUF format from [`Silvelter/Yomiel-22B`](https://huggingface.co/Silvelter/Yomiel-22B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Silvelter/Yomiel-22B) for more details on the model.

---
Model details:
-
This is a merge of pre-trained language models created using mergekit.

Merge Method
-
This model was merged using the della_linear merge method using ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1 as a base.

Models Merged
-
The following models were included in the merge:

    nbeerbower/Mistral-Small-Drummer-22B
    gghfez/SeminalRP-22b
    TheDrummer/Cydonia-22B-v1.1
    anthracite-org/magnum-v4-22b

Configuration
-
The following YAML configuration was used to produce this model:

base_model: ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1
parameters:
  epsilon: 0.04
  lambda: 1.05
  int8_mask: true
  rescale: true
  normalize: false
dtype: bfloat16
tokenizer_source: base
merge_method: della_linear
models:
  - model: ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1
    parameters:
      weight: [0.2, 0.3, 0.2, 0.3, 0.2]
      density: [0.45, 0.55, 0.45, 0.55, 0.45]
  - model: gghfez/SeminalRP-22b
    parameters:
      weight: [0.01768, -0.01675, 0.01285, -0.01696, 0.01421]
      density: [0.6, 0.4, 0.5, 0.4, 0.6]
  - model: anthracite-org/magnum-v4-22b
    parameters:
      weight: [0.208, 0.139, 0.139, 0.139, 0.208]
      density: [0.7]
  - model: TheDrummer/Cydonia-22B-v1.1
    parameters:
      weight: [0.208, 0.139, 0.139, 0.139, 0.208]
      density: [0.7]
  - model: nbeerbower/Mistral-Small-Drummer-22B
    parameters:
      weight: [0.33]
      density: [0.45, 0.55, 0.45, 0.55, 0.45]

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Yomiel-22B-Q5_K_S-GGUF --hf-file yomiel-22b-q5_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Yomiel-22B-Q5_K_S-GGUF --hf-file yomiel-22b-q5_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Yomiel-22B-Q5_K_S-GGUF --hf-file yomiel-22b-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Yomiel-22B-Q5_K_S-GGUF --hf-file yomiel-22b-q5_k_s.gguf -c 2048
```