File size: 1,454 Bytes
48d9296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f5ffd
 
 
48d9296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc14a0c
 
48d9296
 
 
84f5ffd
48d9296
 
 
 
 
84f5ffd
 
48d9296
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: xlnet-large-cased-detect-dep
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlnet-large-cased-detect-dep

This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5708
- Accuracy: 0.744
- F1: 0.8190

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6282        | 1.0   | 1502 | 0.5322          | 0.757    | 0.8248 |
| 0.6115        | 2.0   | 3004 | 0.5708          | 0.744    | 0.8190 |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3