raja-nectar commited on
Commit
c3bb676
1 Parent(s): a4d821a

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-72B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-72B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "k_proj",
25
+ "v_proj",
26
+ "o_proj",
27
+ "gate_proj",
28
+ "q_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fe9a98ff979934742812fba760456491933a2331ec2f41758e87a07c17bc976
3
+ size 210685048
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
global_step90/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab171d5adc7e392280480b1519dd2f4833d742f7a5d98af3e4a3dfb346e1c196
3
+ size 315805264
global_step90/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96085c229d3e0ba5eae3a5a68f956f839694b90db836565ec8ce9d4136611b93
3
+ size 315805264
global_step90/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99c70fe60994a96aa945650e7a5c20cbe9a15ca0a7c065882bd2c3f92d981697
3
+ size 315805264
global_step90/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48b7550518e3297234d1d4b09e8721cd31363300062916ae1aed7d50b01e6761
3
+ size 315805264
global_step90/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:412948439f14472486c9e02fb1a734f119e21f83f071702c6454abd133d70c09
3
+ size 1113926
global_step90/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794a00d01423e8bc0fad97caf2180fa36039ccf1e36131c5cb46f9901eb74ccf
3
+ size 1113926
global_step90/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fd2375f17babaaf843d877516733051723dbea0a2b327a2c365a5f2851be197
3
+ size 1113926
global_step90/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9da28fd6fc9d392c372ab942988d9b5405160e7ffd57ade9ef47f6656a6187e
3
+ size 1113926
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step90
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee97cd82dba4d425fdd8dfdb88d4a43d0d4b1979b5c81ab4a24914fb00d4f332
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91dad95440fb85dc4a31745642117165c1a72173b2e389679ea8c0b2b6fcd7e2
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98698326b023c2af02c94f18726ce52c7f7a6fe290734dd7edbe99bc807fcfa0
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:708e7c6b5bf8a327e688779ebc08830ce249928bcb1ff5c82b1b1d0bf6d2660b
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cc822f1bec298ebdebdeec13e889d39885b756a2342fdf9b4c05d554b19aa5f
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,711 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.8274111675126905,
5
+ "eval_steps": 15,
6
+ "global_step": 90,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02030456852791878,
13
+ "grad_norm": 2.874329090118408,
14
+ "learning_rate": 1.25e-05,
15
+ "loss": 3.984,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.04060913705583756,
20
+ "grad_norm": 2.71229887008667,
21
+ "learning_rate": 2.5e-05,
22
+ "loss": 4.0724,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.06091370558375635,
27
+ "grad_norm": 2.8235723972320557,
28
+ "learning_rate": 3.7500000000000003e-05,
29
+ "loss": 4.0758,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.08121827411167512,
34
+ "grad_norm": 2.7236318588256836,
35
+ "learning_rate": 5e-05,
36
+ "loss": 3.9899,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.10152284263959391,
41
+ "grad_norm": 2.6509652137756348,
42
+ "learning_rate": 6.25e-05,
43
+ "loss": 4.0496,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.1218274111675127,
48
+ "grad_norm": 2.71999454498291,
49
+ "learning_rate": 7.500000000000001e-05,
50
+ "loss": 3.9312,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.14213197969543148,
55
+ "grad_norm": 2.423703193664551,
56
+ "learning_rate": 8.75e-05,
57
+ "loss": 3.8856,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.16243654822335024,
62
+ "grad_norm": 2.5448386669158936,
63
+ "learning_rate": 0.0001,
64
+ "loss": 3.5434,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.18274111675126903,
69
+ "grad_norm": 1.8756992816925049,
70
+ "learning_rate": 9.99872299773906e-05,
71
+ "loss": 3.0033,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.20304568527918782,
76
+ "grad_norm": 0.8611156344413757,
77
+ "learning_rate": 9.994892643250147e-05,
78
+ "loss": 2.9103,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.2233502538071066,
83
+ "grad_norm": 0.5660148859024048,
84
+ "learning_rate": 9.988510893081799e-05,
85
+ "loss": 2.6369,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.2436548223350254,
90
+ "grad_norm": 0.5000542402267456,
91
+ "learning_rate": 9.979581007037776e-05,
92
+ "loss": 2.7784,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.2639593908629442,
97
+ "grad_norm": 0.4509906768798828,
98
+ "learning_rate": 9.968107546511942e-05,
99
+ "loss": 2.4779,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.28426395939086296,
104
+ "grad_norm": 0.4468601942062378,
105
+ "learning_rate": 9.95409637215831e-05,
106
+ "loss": 2.546,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.30456852791878175,
111
+ "grad_norm": 0.47582972049713135,
112
+ "learning_rate": 9.937554640897413e-05,
113
+ "loss": 2.5675,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.30456852791878175,
118
+ "eval_loss": 2.252539873123169,
119
+ "eval_runtime": 125.5198,
120
+ "eval_samples_per_second": 0.661,
121
+ "eval_steps_per_second": 0.167,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.3248730964467005,
126
+ "grad_norm": 0.4718024730682373,
127
+ "learning_rate": 9.918490802260538e-05,
128
+ "loss": 2.3554,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.34517766497461927,
133
+ "grad_norm": 0.4537792205810547,
134
+ "learning_rate": 9.896914594073703e-05,
135
+ "loss": 2.3913,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.36548223350253806,
140
+ "grad_norm": 0.44835665822029114,
141
+ "learning_rate": 9.87283703748356e-05,
142
+ "loss": 2.3686,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.38578680203045684,
147
+ "grad_norm": 0.46018558740615845,
148
+ "learning_rate": 9.846270431327793e-05,
149
+ "loss": 2.3555,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.40609137055837563,
154
+ "grad_norm": 0.4601113200187683,
155
+ "learning_rate": 9.817228345852851e-05,
156
+ "loss": 2.3785,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.4263959390862944,
161
+ "grad_norm": 0.480472594499588,
162
+ "learning_rate": 9.785725615782262e-05,
163
+ "loss": 2.278,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.4467005076142132,
168
+ "grad_norm": 0.5582306981086731,
169
+ "learning_rate": 9.751778332739033e-05,
170
+ "loss": 2.4215,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.467005076142132,
175
+ "grad_norm": 0.547773003578186,
176
+ "learning_rate": 9.715403837026046e-05,
177
+ "loss": 2.3028,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.4873096446700508,
182
+ "grad_norm": 0.5253167748451233,
183
+ "learning_rate": 9.676620708768607e-05,
184
+ "loss": 2.3265,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.5076142131979695,
189
+ "grad_norm": 0.5330803394317627,
190
+ "learning_rate": 9.635448758423702e-05,
191
+ "loss": 2.1958,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.5279187817258884,
196
+ "grad_norm": 0.5347826480865479,
197
+ "learning_rate": 9.591909016660807e-05,
198
+ "loss": 2.1515,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.5482233502538071,
203
+ "grad_norm": 0.5064857602119446,
204
+ "learning_rate": 9.546023723619386e-05,
205
+ "loss": 2.23,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.5685279187817259,
210
+ "grad_norm": 0.5688650012016296,
211
+ "learning_rate": 9.497816317548625e-05,
212
+ "loss": 2.0931,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.5888324873096447,
217
+ "grad_norm": 0.5568444728851318,
218
+ "learning_rate": 9.447311422835142e-05,
219
+ "loss": 2.2783,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.6091370558375635,
224
+ "grad_norm": 0.5993527770042419,
225
+ "learning_rate": 9.39453483742483e-05,
226
+ "loss": 2.2624,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.6091370558375635,
231
+ "eval_loss": 2.009953737258911,
232
+ "eval_runtime": 125.0198,
233
+ "eval_samples_per_second": 0.664,
234
+ "eval_steps_per_second": 0.168,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.6294416243654822,
239
+ "grad_norm": 0.556568443775177,
240
+ "learning_rate": 9.339513519645249e-05,
241
+ "loss": 2.265,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.649746192893401,
246
+ "grad_norm": 0.5960446000099182,
247
+ "learning_rate": 9.282275574435281e-05,
248
+ "loss": 2.1947,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.6700507614213198,
253
+ "grad_norm": 0.5874341130256653,
254
+ "learning_rate": 9.222850238989103e-05,
255
+ "loss": 2.2951,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.6903553299492385,
260
+ "grad_norm": 0.582109808921814,
261
+ "learning_rate": 9.161267867821802e-05,
262
+ "loss": 2.1387,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.7106598984771574,
267
+ "grad_norm": 0.6334108114242554,
268
+ "learning_rate": 9.097559917264267e-05,
269
+ "loss": 2.2382,
270
+ "step": 35
271
+ },
272
+ {
273
+ "epoch": 0.7309644670050761,
274
+ "grad_norm": 0.5571526885032654,
275
+ "learning_rate": 9.031758929395258e-05,
276
+ "loss": 2.1604,
277
+ "step": 36
278
+ },
279
+ {
280
+ "epoch": 0.751269035532995,
281
+ "grad_norm": 0.5545266270637512,
282
+ "learning_rate": 8.963898515418884e-05,
283
+ "loss": 2.0082,
284
+ "step": 37
285
+ },
286
+ {
287
+ "epoch": 0.7715736040609137,
288
+ "grad_norm": 0.5715925693511963,
289
+ "learning_rate": 8.894013338495981e-05,
290
+ "loss": 2.2066,
291
+ "step": 38
292
+ },
293
+ {
294
+ "epoch": 0.7918781725888325,
295
+ "grad_norm": 0.5664649605751038,
296
+ "learning_rate": 8.82213909603812e-05,
297
+ "loss": 2.1361,
298
+ "step": 39
299
+ },
300
+ {
301
+ "epoch": 0.8121827411167513,
302
+ "grad_norm": 0.5984413623809814,
303
+ "learning_rate": 8.74831250147335e-05,
304
+ "loss": 2.0842,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.8324873096446701,
309
+ "grad_norm": 0.6048261523246765,
310
+ "learning_rate": 8.672571265492943e-05,
311
+ "loss": 2.1793,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.8527918781725888,
316
+ "grad_norm": 0.6012648940086365,
317
+ "learning_rate": 8.594954076788736e-05,
318
+ "loss": 2.0668,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.8730964467005076,
323
+ "grad_norm": 0.6133915781974792,
324
+ "learning_rate": 8.515500582290914e-05,
325
+ "loss": 2.2131,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.8934010152284264,
330
+ "grad_norm": 0.5678202509880066,
331
+ "learning_rate": 8.434251366916322e-05,
332
+ "loss": 2.1902,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.9137055837563451,
337
+ "grad_norm": 0.6124091744422913,
338
+ "learning_rate": 8.351247932837655e-05,
339
+ "loss": 2.1055,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.9137055837563451,
344
+ "eval_loss": 1.9042185544967651,
345
+ "eval_runtime": 124.2495,
346
+ "eval_samples_per_second": 0.668,
347
+ "eval_steps_per_second": 0.169,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.934010152284264,
352
+ "grad_norm": 0.6008590459823608,
353
+ "learning_rate": 8.266532678284103e-05,
354
+ "loss": 1.9734,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.9543147208121827,
359
+ "grad_norm": 0.6411317586898804,
360
+ "learning_rate": 8.18014887588431e-05,
361
+ "loss": 2.0015,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.9746192893401016,
366
+ "grad_norm": 0.6390472650527954,
367
+ "learning_rate": 8.092140650562665e-05,
368
+ "loss": 2.0936,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.9949238578680203,
373
+ "grad_norm": 0.6495903730392456,
374
+ "learning_rate": 8.002552957000254e-05,
375
+ "loss": 1.9886,
376
+ "step": 49
377
+ },
378
+ {
379
+ "epoch": 1.015228426395939,
380
+ "grad_norm": 1.22446870803833,
381
+ "learning_rate": 7.911431556671968e-05,
382
+ "loss": 3.395,
383
+ "step": 50
384
+ },
385
+ {
386
+ "epoch": 1.0355329949238579,
387
+ "grad_norm": 0.606292188167572,
388
+ "learning_rate": 7.818822994471505e-05,
389
+ "loss": 1.8093,
390
+ "step": 51
391
+ },
392
+ {
393
+ "epoch": 1.0558375634517767,
394
+ "grad_norm": 0.6382877230644226,
395
+ "learning_rate": 7.724774574936188e-05,
396
+ "loss": 2.0305,
397
+ "step": 52
398
+ },
399
+ {
400
+ "epoch": 1.0761421319796955,
401
+ "grad_norm": 0.661160945892334,
402
+ "learning_rate": 7.629334338083773e-05,
403
+ "loss": 1.9056,
404
+ "step": 53
405
+ },
406
+ {
407
+ "epoch": 1.0964467005076142,
408
+ "grad_norm": 0.6464510560035706,
409
+ "learning_rate": 7.532551034873559e-05,
410
+ "loss": 1.9847,
411
+ "step": 54
412
+ },
413
+ {
414
+ "epoch": 1.116751269035533,
415
+ "grad_norm": 0.6648440361022949,
416
+ "learning_rate": 7.43447410230435e-05,
417
+ "loss": 1.9907,
418
+ "step": 55
419
+ },
420
+ {
421
+ "epoch": 1.1370558375634519,
422
+ "grad_norm": 0.6609318256378174,
423
+ "learning_rate": 7.335153638162005e-05,
424
+ "loss": 1.9298,
425
+ "step": 56
426
+ },
427
+ {
428
+ "epoch": 1.1573604060913705,
429
+ "grad_norm": 0.6394674777984619,
430
+ "learning_rate": 7.234640375429427e-05,
431
+ "loss": 1.9282,
432
+ "step": 57
433
+ },
434
+ {
435
+ "epoch": 1.1776649746192893,
436
+ "grad_norm": 0.7306097149848938,
437
+ "learning_rate": 7.132985656372126e-05,
438
+ "loss": 1.9263,
439
+ "step": 58
440
+ },
441
+ {
442
+ "epoch": 1.1979695431472082,
443
+ "grad_norm": 0.665061354637146,
444
+ "learning_rate": 7.030241406312528e-05,
445
+ "loss": 1.7979,
446
+ "step": 59
447
+ },
448
+ {
449
+ "epoch": 1.218274111675127,
450
+ "grad_norm": 0.7927564978599548,
451
+ "learning_rate": 6.926460107106482e-05,
452
+ "loss": 2.1949,
453
+ "step": 60
454
+ },
455
+ {
456
+ "epoch": 1.218274111675127,
457
+ "eval_loss": 1.8604909181594849,
458
+ "eval_runtime": 124.3295,
459
+ "eval_samples_per_second": 0.668,
460
+ "eval_steps_per_second": 0.169,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 1.2385786802030456,
465
+ "grad_norm": 0.7951006889343262,
466
+ "learning_rate": 6.821694770335481e-05,
467
+ "loss": 1.9729,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 1.2588832487309645,
472
+ "grad_norm": 0.7578277587890625,
473
+ "learning_rate": 6.715998910228296e-05,
474
+ "loss": 1.7568,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 1.2791878172588833,
479
+ "grad_norm": 0.8395410180091858,
480
+ "learning_rate": 6.60942651632586e-05,
481
+ "loss": 2.0653,
482
+ "step": 63
483
+ },
484
+ {
485
+ "epoch": 1.299492385786802,
486
+ "grad_norm": 0.7950598001480103,
487
+ "learning_rate": 6.502032025903355e-05,
488
+ "loss": 1.7411,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 1.3197969543147208,
493
+ "grad_norm": 0.9455265998840332,
494
+ "learning_rate": 6.393870296163615e-05,
495
+ "loss": 2.0562,
496
+ "step": 65
497
+ },
498
+ {
499
+ "epoch": 1.3401015228426396,
500
+ "grad_norm": 0.8618624806404114,
501
+ "learning_rate": 6.284996576216014e-05,
502
+ "loss": 1.7543,
503
+ "step": 66
504
+ },
505
+ {
506
+ "epoch": 1.3604060913705585,
507
+ "grad_norm": 0.8657338619232178,
508
+ "learning_rate": 6.17546647885516e-05,
509
+ "loss": 2.0544,
510
+ "step": 67
511
+ },
512
+ {
513
+ "epoch": 1.380710659898477,
514
+ "grad_norm": 0.8475260138511658,
515
+ "learning_rate": 6.065335952153845e-05,
516
+ "loss": 1.9429,
517
+ "step": 68
518
+ },
519
+ {
520
+ "epoch": 1.401015228426396,
521
+ "grad_norm": 0.8515224456787109,
522
+ "learning_rate": 5.954661250884703e-05,
523
+ "loss": 1.7757,
524
+ "step": 69
525
+ },
526
+ {
527
+ "epoch": 1.4213197969543148,
528
+ "grad_norm": 0.9630141258239746,
529
+ "learning_rate": 5.8434989077852366e-05,
530
+ "loss": 2.0841,
531
+ "step": 70
532
+ },
533
+ {
534
+ "epoch": 1.4416243654822334,
535
+ "grad_norm": 0.8603659868240356,
536
+ "learning_rate": 5.7319057046808335e-05,
537
+ "loss": 1.6943,
538
+ "step": 71
539
+ },
540
+ {
541
+ "epoch": 1.4619289340101522,
542
+ "grad_norm": 0.9940032362937927,
543
+ "learning_rate": 5.619938643480561e-05,
544
+ "loss": 2.0689,
545
+ "step": 72
546
+ },
547
+ {
548
+ "epoch": 1.482233502538071,
549
+ "grad_norm": 0.8981780409812927,
550
+ "learning_rate": 5.5076549170605406e-05,
551
+ "loss": 1.811,
552
+ "step": 73
553
+ },
554
+ {
555
+ "epoch": 1.50253807106599,
556
+ "grad_norm": 0.8641999363899231,
557
+ "learning_rate": 5.3951118800497745e-05,
558
+ "loss": 1.8436,
559
+ "step": 74
560
+ },
561
+ {
562
+ "epoch": 1.5228426395939088,
563
+ "grad_norm": 0.8729159832000732,
564
+ "learning_rate": 5.2823670195333494e-05,
565
+ "loss": 1.7436,
566
+ "step": 75
567
+ },
568
+ {
569
+ "epoch": 1.5228426395939088,
570
+ "eval_loss": 1.8201268911361694,
571
+ "eval_runtime": 124.1955,
572
+ "eval_samples_per_second": 0.668,
573
+ "eval_steps_per_second": 0.169,
574
+ "step": 75
575
+ },
576
+ {
577
+ "epoch": 1.5431472081218274,
578
+ "grad_norm": 0.9512869715690613,
579
+ "learning_rate": 5.169477925687981e-05,
580
+ "loss": 1.7664,
581
+ "step": 76
582
+ },
583
+ {
584
+ "epoch": 1.5634517766497462,
585
+ "grad_norm": 0.9679103493690491,
586
+ "learning_rate": 5.0565022623648995e-05,
587
+ "loss": 1.9316,
588
+ "step": 77
589
+ },
590
+ {
591
+ "epoch": 1.5837563451776648,
592
+ "grad_norm": 0.9876412153244019,
593
+ "learning_rate": 4.9434977376351023e-05,
594
+ "loss": 1.9186,
595
+ "step": 78
596
+ },
597
+ {
598
+ "epoch": 1.6040609137055837,
599
+ "grad_norm": 0.9529967904090881,
600
+ "learning_rate": 4.8305220743120186e-05,
601
+ "loss": 1.7784,
602
+ "step": 79
603
+ },
604
+ {
605
+ "epoch": 1.6243654822335025,
606
+ "grad_norm": 1.0214565992355347,
607
+ "learning_rate": 4.717632980466651e-05,
608
+ "loss": 1.8424,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 1.6446700507614214,
613
+ "grad_norm": 0.9737630486488342,
614
+ "learning_rate": 4.6048881199502267e-05,
615
+ "loss": 1.8476,
616
+ "step": 81
617
+ },
618
+ {
619
+ "epoch": 1.6649746192893402,
620
+ "grad_norm": 1.0335719585418701,
621
+ "learning_rate": 4.4923450829394605e-05,
622
+ "loss": 1.9076,
623
+ "step": 82
624
+ },
625
+ {
626
+ "epoch": 1.6852791878172588,
627
+ "grad_norm": 1.0101923942565918,
628
+ "learning_rate": 4.380061356519441e-05,
629
+ "loss": 1.829,
630
+ "step": 83
631
+ },
632
+ {
633
+ "epoch": 1.7055837563451777,
634
+ "grad_norm": 0.9788248538970947,
635
+ "learning_rate": 4.268094295319167e-05,
636
+ "loss": 1.7334,
637
+ "step": 84
638
+ },
639
+ {
640
+ "epoch": 1.7258883248730963,
641
+ "grad_norm": 1.0588387250900269,
642
+ "learning_rate": 4.1565010922147646e-05,
643
+ "loss": 2.0164,
644
+ "step": 85
645
+ },
646
+ {
647
+ "epoch": 1.7461928934010151,
648
+ "grad_norm": 0.9743729829788208,
649
+ "learning_rate": 4.045338749115298e-05,
650
+ "loss": 1.7956,
651
+ "step": 86
652
+ },
653
+ {
654
+ "epoch": 1.766497461928934,
655
+ "grad_norm": 1.0397388935089111,
656
+ "learning_rate": 3.934664047846156e-05,
657
+ "loss": 1.7431,
658
+ "step": 87
659
+ },
660
+ {
661
+ "epoch": 1.7868020304568528,
662
+ "grad_norm": 1.1108192205429077,
663
+ "learning_rate": 3.82453352114484e-05,
664
+ "loss": 1.8768,
665
+ "step": 88
666
+ },
667
+ {
668
+ "epoch": 1.8071065989847717,
669
+ "grad_norm": 1.0383998155593872,
670
+ "learning_rate": 3.715003423783986e-05,
671
+ "loss": 1.8673,
672
+ "step": 89
673
+ },
674
+ {
675
+ "epoch": 1.8274111675126905,
676
+ "grad_norm": 0.9685633182525635,
677
+ "learning_rate": 3.606129703836385e-05,
678
+ "loss": 1.812,
679
+ "step": 90
680
+ },
681
+ {
682
+ "epoch": 1.8274111675126905,
683
+ "eval_loss": 1.7956775426864624,
684
+ "eval_runtime": 124.2818,
685
+ "eval_samples_per_second": 0.668,
686
+ "eval_steps_per_second": 0.169,
687
+ "step": 90
688
+ }
689
+ ],
690
+ "logging_steps": 1,
691
+ "max_steps": 147,
692
+ "num_input_tokens_seen": 0,
693
+ "num_train_epochs": 3,
694
+ "save_steps": 15,
695
+ "stateful_callbacks": {
696
+ "TrainerControl": {
697
+ "args": {
698
+ "should_epoch_stop": false,
699
+ "should_evaluate": false,
700
+ "should_log": false,
701
+ "should_save": true,
702
+ "should_training_stop": false
703
+ },
704
+ "attributes": {}
705
+ }
706
+ },
707
+ "total_flos": 190111214469120.0,
708
+ "train_batch_size": 2,
709
+ "trial_name": null,
710
+ "trial_params": null
711
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83206bb0df029e282009b5077b1107ab542c5099dfc8397b86db40204a8cf790
3
+ size 7352
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)