File size: 1,851 Bytes
60b97d4
b8e3c96
 
 
 
60b97d4
b8e3c96
60b97d4
b8e3c96
4976fc4
b8e3c96
 
 
 
 
 
 
 
 
 
 
 
83d048a
60b97d4
 
 
b8e3c96
60b97d4
b8e3c96
 
 
 
 
 
 
 
 
 
 
 
60b97d4
 
b8e3c96
60b97d4
b8e3c96
 
60b97d4
b8e3c96
60b97d4
b8e3c96
 
 
 
 
 
60b97d4
b8e3c96
 
 
 
 
 
 
 
 
60b97d4
b8e3c96
 
 
 
60b97d4
b8e3c96
60b97d4
b8e3c96
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- th
- en
library_name: transformers
base_model:
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-7B
pipeline_tag: text-generation
license: apache-2.0
---

<img src="./Tsunami.webp" alt="Tsunami Model" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# Tsunami-0.5x-7B-Instruct
**TSUNAMI**: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.

**TSUNAMI** full name was created by ChatGPT.

---

### infomation
**Tsunami-0.5x-7B-Instruct** is Thai Large Language Model that fine-tuned from **Qwen2.5-7B** around **100,000** rows in Thai dataset.

---

### Prompt Template

This model uses `ChatML` prompt template:

```
<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}
````

### How to use


```python

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "Tsunami-th/Tsunami-0.5x-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "สวัสดีครับ"}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
   output = model.generate(**inputs, max_new_tokens=512)

response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)
```

---

### Author
 - Pollakrit Lorprasertkul | [email protected]

---

 - **Tsunami-0.5x-7B-Instruct** is the version 0.5x that did not train on the whole dataset.
 - **Tsunami-1.0-7B-Instruct** is coming soon.