|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PreTrainedModel, PretrainedConfig, AutoModel,LongformerForCausalLM, LongformerTokenizer
|
|
import torch
|
|
import math
|
|
from peft import get_peft_model, LoraConfig, TaskType
|
|
import os
|
|
|
|
def freeze_model(model):
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
|
|
|
|
class BERT_Compressor(torch.nn.Module):
|
|
def __init__(self, compr_model_name, compr_rate, compr_linear_type, decoder_hidden_size):
|
|
super().__init__()
|
|
|
|
self.model_name = compr_model_name
|
|
self.model = AutoModel.from_pretrained(compr_model_name, torch_dtype=torch.float16)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(compr_model_name, use_fast=True)
|
|
self.compr_rate = compr_rate
|
|
self.compressing_mode = compr_linear_type
|
|
|
|
if self.compressing_mode == 'concat':
|
|
self.linear = torch.nn.Linear(self.model.config.hidden_size*self.compr_rate, decoder_hidden_size)
|
|
elif self.compressing_mode == 'mean':
|
|
self.linear = torch.nn.Linear(self.model.config.hidden_size, decoder_hidden_size)
|
|
self.linear = self.linear.float16()
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
|
|
segment_compress_outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
|
num_embs = math.ceil(input_ids.size(1) / self.compr_rate)
|
|
all_hidden_states_emb = list()
|
|
if self.compressing_mode == 'concat':
|
|
for segment_idx in range(num_embs):
|
|
start_idx = segment_idx * self.compr_rate
|
|
end_idx = (segment_idx + 1) * self.compr_rate
|
|
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
|
hidden_state_concat = torch.flatten(hidden_state, start_dim=1)
|
|
all_hidden_states_emb.append(hidden_state_concat)
|
|
elif self.compressing_mode == "mean":
|
|
for segment_idx in range(num_embs):
|
|
start_idx = segment_idx * self.compr_rate
|
|
end_idx = (segment_idx + 1) * self.compr_rate
|
|
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
|
|
|
all_hidden_states_emb.append(hidden_state)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
all_hidden_states_emb_cat = torch.stack(all_hidden_states_emb, dim=1)
|
|
transformed_embeds = self.linear(all_hidden_states_emb_cat)
|
|
|
|
|
|
if self.compressing_mode == "mean":
|
|
transformed_embeds = torch.mean(transformed_embeds, dim=2)
|
|
|
|
|
|
return transformed_embeds
|
|
|
|
class COCOMConfig(PretrainedConfig):
|
|
|
|
model_type = "COCOM"
|
|
def __init__(self,
|
|
decoder_model_name="meta-llama/Llama-2-7b-chat-hf",
|
|
quantization = 'no',
|
|
generation_top_k = 1,
|
|
sep = False,
|
|
compr_model_name = "bert-base-uncased",
|
|
compr_rate = 64,
|
|
compr_linear_type = 'concat',
|
|
lora = False,
|
|
training_form="both",
|
|
lora_r=16,
|
|
attn_implementation="eager",
|
|
device_map = "cuda",
|
|
**kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
self.decoder_model_name = decoder_model_name
|
|
self.quantization = quantization
|
|
self.generation_top_k = generation_top_k
|
|
self.sep = sep
|
|
self.compr_model_name = compr_model_name
|
|
self.compr_rate = compr_rate
|
|
self.compr_linear_type = compr_linear_type
|
|
self.lora = lora
|
|
self.training_form = training_form
|
|
self.lora_r = lora_r
|
|
self.attn_implementation = attn_implementation
|
|
self.device_map = device_map
|
|
|
|
class COCOM(PreTrainedModel):
|
|
config_class = COCOMConfig
|
|
def __init__(self, cfg):
|
|
super().__init__(cfg)
|
|
|
|
attn_impl = cfg.attn_implementation
|
|
|
|
if cfg.quantization == "no":
|
|
self.decoder = AutoModelForCausalLM.from_pretrained(
|
|
cfg.decoder_model_name,
|
|
torch_dtype=torch.float16,
|
|
attn_implementation=attn_impl,
|
|
low_cpu_mem_usage = True,
|
|
device_map =cfg.device_map
|
|
)
|
|
elif cfg.quantization == "int4":
|
|
quant_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_quant_type='nf4',
|
|
bnb_4bit_compute_dtype='float16',
|
|
low_cpu_mem_usage = True,
|
|
)
|
|
self.decoder = AutoModelForCausalLM.from_pretrained(
|
|
cfg.decoder_model_name,
|
|
quantization_config=quant_config,
|
|
attn_implementation=attn_impl,
|
|
torch_dtype=torch.float16,
|
|
resume_download=True,
|
|
low_cpu_mem_usage = True,
|
|
trust_remote_code=True,
|
|
device_map =cfg.device_map
|
|
)
|
|
elif cfg.quantization == "int8":
|
|
quant_config = BitsAndBytesConfig(
|
|
load_in_8bit=True,
|
|
llm_int8_enable_fp32_cpu_offload=True,
|
|
bnb_4bit_compute_dtype='float16',
|
|
low_cpu_mem_usage = True,
|
|
)
|
|
self.decoder = AutoModelForCausalLM.from_pretrained(
|
|
cfg.decoder_model_name,
|
|
quantization_config=quant_config,
|
|
attn_implementation=attn_impl,
|
|
torch_dtype=torch.float16,
|
|
resume_download=True,
|
|
low_cpu_mem_usage = True,
|
|
trust_remote_code=True,
|
|
device_map =cfg.device_map
|
|
)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
|
|
if cfg.compr_model_name is not None:
|
|
|
|
self.compr = BERT_Compressor(cfg.compr_model_name, cfg.compr_rate, cfg.compr_linear_type, self.decoder.config.hidden_size)
|
|
else:
|
|
|
|
self.compr = None
|
|
|
|
|
|
if cfg.lora:
|
|
peft_config = LoraConfig(
|
|
task_type="CAUSAL_LM",
|
|
r=cfg.lora_r,
|
|
lora_alpha=2* cfg.lora_r,
|
|
target_modules='all-linear',
|
|
lora_dropout=0.1,
|
|
)
|
|
self.decoder = get_peft_model(self.decoder, peft_config)
|
|
self.decoder.print_trainable_parameters()
|
|
|
|
|
|
self.training_form = cfg.training_form
|
|
if self.training_form == "compressor" and self.compr is not None:
|
|
freeze_model(self.decoder)
|
|
|
|
self.decoder_tokenizer = AutoTokenizer.from_pretrained(cfg.decoder_model_name, use_fast=True, padding_side='left')
|
|
|
|
|
|
self.decoder_tokenizer.add_special_tokens({'additional_special_tokens': ['<MEM>', '<AE>', '<ENC>', '<SEP>']})
|
|
self.decoder_tokenizer.mem_token = '<MEM>'
|
|
self.decoder_tokenizer.ae_token = '<AE>'
|
|
self.decoder_tokenizer.enc_token = '<ENC>'
|
|
self.decoder_tokenizer.sep_token = '<SEP>'
|
|
|
|
self.decoder_tokenizer.mem_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<MEM>')
|
|
self.decoder_tokenizer.ae_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<AE>')
|
|
self.decoder_tokenizer.sep_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<SEP>')
|
|
|
|
if self.decoder_tokenizer.pad_token_id is None:
|
|
self.decoder_tokenizer.pad_token_id = self.decoder_tokenizer.bos_token_id
|
|
|
|
|
|
self.decoder.resize_token_embeddings(len(self.decoder_tokenizer))
|
|
self.decoder.generation_config.top_p=None
|
|
self.decoder.generation_config.temperature=None
|
|
self.compr_model_name = cfg.compr_model_name
|
|
|
|
self.generation_top_k = cfg.generation_top_k
|
|
self.sep = cfg.sep
|
|
self.compr_rate = cfg.compr_rate
|
|
self.local_rank = os.getenv('LOCAL_RANK', '0')
|
|
|
|
def compress_and_replace_emb(self, enc_input_ids, enc_attention_mask, dec_input_ids):
|
|
indices = range(0, enc_input_ids.size(0) + 1, self.generation_top_k)
|
|
if self.compr:
|
|
compressed_embs = self.compr(enc_input_ids, enc_attention_mask)
|
|
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
|
|
else:
|
|
compressed_embs = self.compr_decoder(enc_input_ids, enc_attention_mask)
|
|
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
|
|
return input_embeds
|
|
|
|
def compr_decoder(self, input_ids, attention_mask):
|
|
emb = self.decoder(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True).hidden_states[-1]
|
|
mask = input_ids == self.decoder_tokenizer.mem_token_id
|
|
return emb[mask].reshape(emb.size(0), -1, emb.size(-1))
|
|
|
|
|
|
def replace_embeddings(self, compressed_embs, dec_input_ids, indices):
|
|
|
|
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids)
|
|
num_embs = compressed_embs.size(1)
|
|
if self.sep:
|
|
slot_len = num_embs + 1
|
|
else:
|
|
slot_len = num_embs
|
|
|
|
first_mem_token_indices = torch.argmax((dec_input_ids == self.decoder_tokenizer.mem_token_id).int(), dim=1)
|
|
batch_size = inputs_embeds.size(0)
|
|
|
|
for i in range(batch_size):
|
|
for j in range(indices[i], indices[i + 1]):
|
|
start_idx = first_mem_token_indices[i].item() + (j-indices[i]) * slot_len
|
|
inputs_embeds[i, start_idx:start_idx + num_embs, :] = compressed_embs[j]
|
|
return inputs_embeds
|
|
|
|
|
|
def forward(self,
|
|
enc_input_ids: torch.LongTensor = None,
|
|
enc_attention_mask: torch.LongTensor = None,
|
|
dec_input_ids: torch.LongTensor = None,
|
|
dec_attention_mask: torch.LongTensor = None,
|
|
labels: torch.LongTensor = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs_embeds = self.compress_and_replace_emb(enc_input_ids, enc_attention_mask, dec_input_ids)
|
|
|
|
|
|
if (self.training_form == "compressor") and (self.compr is None):
|
|
inputs_embeds = inputs_embeds.detach()
|
|
|
|
|
|
decoder_outputs = self.decoder(inputs_embeds=inputs_embeds, attention_mask=dec_attention_mask, labels=labels)
|
|
|
|
return {"loss": decoder_outputs.loss, "logits": decoder_outputs.logits}
|
|
|
|
|
|
|
|
def generate(self, model_input, max_new_tokens=128):
|
|
device = self.decoder.device
|
|
enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask = model_input['enc_input_ids'], model_input['enc_attention_mask'], model_input['dec_input_ids'], model_input['dec_attention_mask']
|
|
inputs_embeds = self.compress_and_replace_emb(enc_input_ids.to(device), enc_attention_mask.to(device), dec_input_ids.to(device))
|
|
output_ids = self.decoder.generate(
|
|
inputs_embeds=inputs_embeds.to(device),
|
|
attention_mask=dec_attention_mask.to(device),
|
|
do_sample=False,
|
|
top_p=None,
|
|
max_new_tokens=min(max_new_tokens, 4096)
|
|
)
|
|
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
return decoded
|
|
|
|
def generate_from_text(self, contexts, questions, max_new_tokens=128):
|
|
|
|
|
|
assert len(contexts) == len(questions)
|
|
assert all([len(context) == len(contexts[0]) for context in contexts])
|
|
|
|
|
|
|
|
self.generation_top_k = len(contexts[0])
|
|
flat_contexts = sum(contexts, [])
|
|
|
|
if self.compr is not None:
|
|
enc_input = self.compr.tokenizer(flat_contexts, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=self.compr_rate)
|
|
num_mem_tokens = math.ceil(enc_input['input_ids'].size(1) / self.compr_rate)
|
|
else:
|
|
|
|
flat_contexts = [self.decoder_tokenizer.enc_token + self.decoder_tokenizer.bos_token + context + self.decoder_tokenizer.bos_token for context in flat_contexts]
|
|
enc_input = self.decoder_tokenizer(flat_contexts, truncation=True, return_tensors='pt', padding="longest")
|
|
num_mem_tokens = math.ceil((enc_input['input_ids'].size(1)-3) / self.compr_rate)
|
|
mem_tokens = torch.full((enc_input['input_ids'].size(0), num_mem_tokens), self.decoder_tokenizer.mem_token_id, dtype=torch.long)
|
|
enc_input['input_ids'] = torch.cat([mem_tokens, enc_input['input_ids']], dim=1)
|
|
enc_input['attention_mask'] = torch.cat([torch.ones_like(mem_tokens), enc_input['attention_mask']], dim=1)
|
|
|
|
|
|
|
|
mem_tokens = self.decoder_tokenizer.mem_token * num_mem_tokens
|
|
if self.sep:
|
|
mem_tokens += self.decoder_tokenizer.sep_token
|
|
|
|
instr = [self.decoder_tokenizer.bos_token + mem_tokens* self.generation_top_k + '[INST]' + question + '\n[/INST]\n' for question in questions]
|
|
inp_dec = self.decoder_tokenizer(instr, truncation=True, return_tensors='pt', padding="longest")
|
|
|
|
|
|
model_input = {
|
|
'enc_input_ids': enc_input['input_ids'].to(self.decoder.device),
|
|
'enc_attention_mask': enc_input['attention_mask'].to(self.decoder.device),
|
|
'dec_input_ids': inp_dec['input_ids'].to(self.decoder.device),
|
|
'dec_attention_mask': inp_dec['attention_mask'].to(self.decoder.device)
|
|
}
|
|
|
|
return self.generate(model_input, max_new_tokens)
|
|
|
|
|
|
|