ayoubkirouane commited on
Commit
101e210
·
1 Parent(s): 156d629

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -13
README.md CHANGED
@@ -1,20 +1,49 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
- ## Training procedure
5
 
 
6
 
7
- The following `bitsandbytes` quantization config was used during training:
8
- - load_in_8bit: False
9
- - load_in_4bit: True
10
- - llm_int8_threshold: 6.0
11
- - llm_int8_skip_modules: None
12
- - llm_int8_enable_fp32_cpu_offload: False
13
- - llm_int8_has_fp16_weight: False
14
- - bnb_4bit_quant_type: nf4
15
- - bnb_4bit_use_double_quant: False
16
- - bnb_4bit_compute_dtype: float16
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  The following `bitsandbytes` quantization config was used during training:
19
  - load_in_8bit: False
20
  - load_in_4bit: True
@@ -26,7 +55,39 @@ The following `bitsandbytes` quantization config was used during training:
26
  - bnb_4bit_use_double_quant: False
27
  - bnb_4bit_compute_dtype: float16
28
  ### Framework versions
29
-
30
  - PEFT 0.4.0
 
 
 
 
 
 
 
 
 
31
 
32
- - PEFT 0.4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ license: llama2
4
+ datasets:
5
+ - TuningAI/Startups_V2
6
+ language:
7
+ - en
8
+ pipeline_tag: conversational
9
+ tags:
10
+ - law
11
+ - startups
12
+ - finance
13
+ - tax
14
+ - Algerian
15
  ---
 
16
 
17
+ ## Model Name: **Llama2_13B_startup_Assistant**
18
 
19
+ ## Description:
 
 
 
 
 
 
 
 
 
20
 
21
+ Llama2_13B_startup_Assistant is a highly specialized language model fine-tuned from Meta's Llama2_13B.
22
+ It has been tailored to assist with inquiries related to Algerian startups, offering valuable insights and guidance in these domains.
23
+
24
+ ## Base Model:
25
+ This model is based on the Meta's **meta-llama/Llama-2-13b-chat-hf** architecture,
26
+ making it a highly capable foundation for generating human-like text responses.
27
+
28
+ ## Dataset :
29
+ This model was fine-tuned on a custom dataset meticulously curated with more than 200 unique examples.
30
+ The dataset incorporates both manual entries and contributions from GPT3.5, GPT4, and Falcon 180B models.
31
+
32
+ ## Fine-tuning Techniques:
33
+ Fine-tuning was performed using QLoRA (Quantized LoRA), an extension of LoRA that introduces quantization for enhanced parameter efficiency.
34
+ The model benefits from 4-bit NormalFloat (NF4) quantization and Double Quantization techniques, ensuring optimized performance.
35
+
36
+ ## Performance:
37
+ **Llama2_13B_startup_Assistant** exhibits improved performance and efficiency in addressing queries related to Algerian tax law and startups,
38
+ making it a valuable resource for individuals and businesses navigating these areas.
39
+
40
+ ## Limitations:
41
+
42
+ * While highly specialized, this model may not cover every nuanced aspect of Algerian tax law or the startup ecosystem.
43
+ * Accuracy may vary depending on the complexity and specificity of questions.
44
+ * It may not provide legal advice, and users should seek professional consultation for critical legal matters.
45
+
46
+ ## Training procedure
47
  The following `bitsandbytes` quantization config was used during training:
48
  - load_in_8bit: False
49
  - load_in_4bit: True
 
55
  - bnb_4bit_use_double_quant: False
56
  - bnb_4bit_compute_dtype: float16
57
  ### Framework versions
 
58
  - PEFT 0.4.0
59
+ ```
60
+ ! huggingface-cli login
61
+ ```
62
+ ```python
63
+ from transformers import pipeline
64
+ from transformers import AutoTokenizer
65
+ from peft import PeftModel, PeftConfig
66
+ from transformers import AutoModelForCausalLM , BitsAndBytesConfig
67
+ import torch
68
 
69
+ #config = PeftConfig.from_pretrained("ayoubkirouane/Llama2_13B_startup_hf")
70
+ bnb_config = BitsAndBytesConfig(
71
+ load_in_4bit=True,
72
+ bnb_4bit_quant_type="nf4",
73
+ bnb_4bit_compute_dtype=getattr(torch, "float16"),
74
+ bnb_4bit_use_double_quant=False)
75
+ model = AutoModelForCausalLM.from_pretrained(
76
+ "meta-llama/Llama-2-7b-hf",
77
+ quantization_config=bnb_config,
78
+ device_map={"": 0})
79
+ model.config.use_cache = False
80
+ model.config.pretraining_tp = 1
81
+ model = PeftModel.from_pretrained(model, "TuningAI/Llama2_7B_Cover_letter_generator")
82
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf" , trust_remote_code=True)
83
+ tokenizer.pad_token = tokenizer.eos_token
84
+ tokenizer.padding_side = "right"
85
+ Instruction = "Given a user's information about the target job, you will generate a Cover letter for this job based on this information."
86
+ while 1:
87
+ input_text = input(">>>")
88
+ logging.set_verbosity(logging.CRITICAL)
89
+ prompt = f"### Instruction\n{Instruction}.\n ###Input \n\n{input_text}. ### Output:"
90
+ pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer,max_length=400)
91
+ result = pipe(prompt)
92
+ print(result[0]['generated_text'].replace(prompt, ''))
93
+ ```