hjian42 commited on
Commit
073b9a5
·
1 Parent(s): 7edb87a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -0
README.md CHANGED
@@ -1,3 +1,30 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
+
5
+ ## Model Specification
6
+ - This is the **state-of-the-art Twitter NER model (with 74.35\% Entity-Level F1)** on Tweebank V2's NER benchmark (also called `Tweebank-NER`), trained on the corpus combining both Tweebank-NER and WNUT 17 training data.
7
+ - For more details about the `TweebankNLP` project, please refer to this [our paper](https://arxiv.org/pdf/2201.07281.pdf) and [github](https://github.com/social-machines/TweebankNLP) page.
8
+
9
+ ## How to use the model
10
+
11
+ ```python
12
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
13
+
14
+ tokenizer = AutoTokenizer.from_pretrained("TweebankNLP/bertweet-tb2_wnut17-ner")
15
+
16
+ model = AutoModelForTokenClassification.from_pretrained("TweebankNLP/bertweet-tb2_wnut17-ner")
17
+ ```
18
+
19
+ ## References
20
+
21
+ If you use this repository in your research, please kindly cite [our paper](https://arxiv.org/pdf/2201.07281.pdf):
22
+
23
+ ```bibtex
24
+ @article{jiang2022tweetnlp,
25
+ title={Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis},
26
+ author={Jiang, Hang and Hua, Yining and Beeferman, Doug and Roy, Deb},
27
+ journal={In Proceedings of the 13th Language Resources and Evaluation Conference (LREC)},
28
+ year={2022}
29
+ }
30
+ ```