Add model card.
Browse files
README.md
CHANGED
@@ -1,3 +1,153 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ja
|
5 |
+
- pt
|
6 |
+
- es
|
7 |
+
- ko
|
8 |
+
- ar
|
9 |
+
- tr
|
10 |
+
- th
|
11 |
+
- fr
|
12 |
+
- id
|
13 |
+
- ru
|
14 |
+
- de
|
15 |
+
- fa
|
16 |
+
- it
|
17 |
+
- zh
|
18 |
+
- pl
|
19 |
+
- hi
|
20 |
+
- ur
|
21 |
+
- nl
|
22 |
+
- el
|
23 |
+
- ms
|
24 |
+
- ca
|
25 |
+
- sr
|
26 |
+
- sv
|
27 |
+
- uk
|
28 |
+
- he
|
29 |
+
- fi
|
30 |
+
- cs
|
31 |
+
- ta
|
32 |
+
- ne
|
33 |
+
- vi
|
34 |
+
- hu
|
35 |
+
- eo
|
36 |
+
- bn
|
37 |
+
- mr
|
38 |
+
- ml
|
39 |
+
- hr
|
40 |
+
- no
|
41 |
+
- sw
|
42 |
+
- sl
|
43 |
+
- te
|
44 |
+
- az
|
45 |
+
- da
|
46 |
+
- ro
|
47 |
+
- gl
|
48 |
+
- gu
|
49 |
+
- ps
|
50 |
+
- mk
|
51 |
+
- kn
|
52 |
+
- bg
|
53 |
+
- lv
|
54 |
+
- eu
|
55 |
+
- pa
|
56 |
+
- et
|
57 |
+
- mn
|
58 |
+
- sq
|
59 |
+
- si
|
60 |
+
- sd
|
61 |
+
- la
|
62 |
+
- is
|
63 |
+
- jv
|
64 |
+
- lt
|
65 |
+
- ku
|
66 |
+
- am
|
67 |
+
- bs
|
68 |
+
- hy
|
69 |
+
- or
|
70 |
+
- sk
|
71 |
+
- uz
|
72 |
+
- cy
|
73 |
+
- my
|
74 |
+
- su
|
75 |
+
- br
|
76 |
+
- as
|
77 |
+
- af
|
78 |
+
- be
|
79 |
+
- fy
|
80 |
+
- kk
|
81 |
+
- ga
|
82 |
+
- lo
|
83 |
+
- ka
|
84 |
+
- km
|
85 |
+
- sa
|
86 |
+
- mg
|
87 |
+
- so
|
88 |
+
- ug
|
89 |
+
- ky
|
90 |
+
- gd
|
91 |
+
- yi
|
92 |
+
tags:
|
93 |
+
- Twitter
|
94 |
+
- Multilingual
|
95 |
+
license: "apache-2.0"
|
96 |
---
|
97 |
+
|
98 |
+
# TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual Tweet Representations
|
99 |
+
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-green.svg?style=flat-square)](http://makeapullrequest.com)
|
100 |
+
[![arXiv](https://img.shields.io/badge/arXiv-2203.15827-b31b1b.svg)](https://arxiv.org/abs/2209.07562)
|
101 |
+
|
102 |
+
|
103 |
+
This repo contains models, code and pointers to datasets from our paper: [TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual Tweet Representations](https://arxiv.org/abs/2209.07562).
|
104 |
+
[[PDF]](https://arxiv.org/pdf/2209.07562.pdf)
|
105 |
+
[[HuggingFace Models]](https://huggingface.co/Twitter)
|
106 |
+
|
107 |
+
### Overview
|
108 |
+
TwHIN-BERT is a new multi-lingual Tweet language model that is trained on 7 billion Tweets from over 100 distinct languages. TwHIN-BERT differs from prior pre-trained language models as it is trained with not only text-based self-supervision (e.g., MLM), but also with a social objective based on the rich social engagements within a Twitter Heterogeneous Information Network (TwHIN).
|
109 |
+
|
110 |
+
TwHIN-BERT can be used as a drop-in replacement for BERT in a variety of NLP and recommendation tasks. It not only outperforms similar models semantic understanding tasks such text classification), but also **social recommendation **tasks such as predicting user to Tweet engagement.
|
111 |
+
|
112 |
+
## 1. Pretrained Models
|
113 |
+
|
114 |
+
We initially release two pretrained TwHIN-BERT models (base and large) that are compatible wit the [HuggingFace BERT models](https://github.com/huggingface/transformers).
|
115 |
+
|
116 |
+
|
117 |
+
| Model | Size | Download Link (🤗 HuggingFace) |
|
118 |
+
| ------------- | ------------- | --------- |
|
119 |
+
| TwHIN-BERT-base | 280M parameters | [Twitter/TwHIN-BERT-base](https://huggingface.co/Twitter/twhin-bert-base) |
|
120 |
+
| TwHIN-BERT-large | 550M parameters | [Twitter/TwHIN-BERT-large](https://huggingface.co/Twitter/twhin-bert-large) |
|
121 |
+
|
122 |
+
|
123 |
+
To use these models in 🤗 Transformers:
|
124 |
+
```python
|
125 |
+
from transformers import AutoTokenizer, AutoModel
|
126 |
+
tokenizer = AutoTokenizer.from_pretrained('Twitter/twhin-bert-large')
|
127 |
+
model = AutoModel.from_pretrained('Twitter/twhin-bert-large')
|
128 |
+
inputs = tokenizer("I'm using TwHIN-BERT! #TwHIN-BERT #NLP", return_tensors="pt")
|
129 |
+
outputs = model(**inputs)
|
130 |
+
```
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
<!-- ## 2. Set up environment and data
|
135 |
+
### Environment
|
136 |
+
TBD
|
137 |
+
|
138 |
+
|
139 |
+
## 3. Fine-tune TwHIN-BERT
|
140 |
+
|
141 |
+
TBD -->
|
142 |
+
|
143 |
+
|
144 |
+
## Citation
|
145 |
+
If you use TwHIN-BERT or out datasets in your work, please cite, please cite the following:
|
146 |
+
```bib
|
147 |
+
@article{zhang2022twhin,
|
148 |
+
title={TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual Tweet Representations},
|
149 |
+
author={Zhang, Xinyang and Malkov, Yury and Florez, Omar and Park, Serim and McWilliams, Brian and Han, Jiawei and El-Kishky, Ahmed},
|
150 |
+
journal={arXiv preprint arXiv:2209.07562},
|
151 |
+
year={2022}
|
152 |
+
}
|
153 |
+
```
|