VictorChew commited on
Commit
3ba82e8
·
verified ·
1 Parent(s): 98a5000

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151654,
3
+ "</img>": 151647,
4
+ "</quad>": 151650,
5
+ "</ref>": 151652,
6
+ "<IMG_CONTEXT>": 151648,
7
+ "<box>": 151653,
8
+ "<img>": 151646,
9
+ "<quad>": 151649,
10
+ "<ref>": 151651,
11
+ "<|endoftext|>": 151643,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644
14
+ }
config.json ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "internvl2-1B",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "llm_config": {
16
+ "_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
17
+ "add_cross_attention": false,
18
+ "architectures": [
19
+ "Qwen2ForCausalLM"
20
+ ],
21
+ "attention_dropout": 0.0,
22
+ "bad_words_ids": null,
23
+ "begin_suppress_tokens": null,
24
+ "bos_token_id": 151643,
25
+ "chunk_size_feed_forward": 0,
26
+ "cross_attention_hidden_size": null,
27
+ "decoder_start_token_id": null,
28
+ "diversity_penalty": 0.0,
29
+ "do_sample": false,
30
+ "early_stopping": false,
31
+ "encoder_no_repeat_ngram_size": 0,
32
+ "eos_token_id": 151645,
33
+ "exponential_decay_length_penalty": null,
34
+ "finetuning_task": null,
35
+ "forced_bos_token_id": null,
36
+ "forced_eos_token_id": null,
37
+ "hidden_act": "silu",
38
+ "hidden_size": 896,
39
+ "id2label": {
40
+ "0": "LABEL_0",
41
+ "1": "LABEL_1"
42
+ },
43
+ "initializer_range": 0.02,
44
+ "intermediate_size": 4864,
45
+ "is_decoder": false,
46
+ "is_encoder_decoder": false,
47
+ "label2id": {
48
+ "LABEL_0": 0,
49
+ "LABEL_1": 1
50
+ },
51
+ "length_penalty": 1.0,
52
+ "max_length": 20,
53
+ "max_position_embeddings": 32768,
54
+ "max_window_layers": 24,
55
+ "min_length": 0,
56
+ "model_type": "qwen2",
57
+ "no_repeat_ngram_size": 0,
58
+ "num_attention_heads": 14,
59
+ "num_beam_groups": 1,
60
+ "num_beams": 1,
61
+ "num_hidden_layers": 24,
62
+ "num_key_value_heads": 2,
63
+ "num_return_sequences": 1,
64
+ "output_attentions": false,
65
+ "output_hidden_states": false,
66
+ "output_scores": false,
67
+ "pad_token_id": null,
68
+ "prefix": null,
69
+ "problem_type": null,
70
+ "pruned_heads": {},
71
+ "remove_invalid_values": false,
72
+ "repetition_penalty": 1.0,
73
+ "return_dict": true,
74
+ "return_dict_in_generate": false,
75
+ "rms_norm_eps": 1e-06,
76
+ "rope_theta": 1000000.0,
77
+ "sep_token_id": null,
78
+ "sliding_window": null,
79
+ "suppress_tokens": null,
80
+ "task_specific_params": null,
81
+ "temperature": 1.0,
82
+ "tf_legacy_loss": false,
83
+ "tie_encoder_decoder": false,
84
+ "tie_word_embeddings": true,
85
+ "tokenizer_class": null,
86
+ "top_k": 50,
87
+ "top_p": 1.0,
88
+ "torch_dtype": "bfloat16",
89
+ "torchscript": false,
90
+ "transformers_version": "4.44.0.dev0",
91
+ "typical_p": 1.0,
92
+ "use_bfloat16": true,
93
+ "use_cache": false,
94
+ "use_sliding_window": false,
95
+ "vocab_size": 151655
96
+ },
97
+ "max_dynamic_patch": 12,
98
+ "min_dynamic_patch": 1,
99
+ "model_type": "internvl_chat",
100
+ "ps_version": "v2",
101
+ "select_layer": -1,
102
+ "template": "Hermes-2",
103
+ "torch_dtype": "bfloat16",
104
+ "transformers_version": null,
105
+ "use_backbone_lora": 0,
106
+ "use_cache": false,
107
+ "use_llm_lora": 0,
108
+ "use_thumbnail": true,
109
+ "vision_config": {
110
+ "_name_or_path": "",
111
+ "add_cross_attention": false,
112
+ "architectures": [
113
+ "InternVisionModel"
114
+ ],
115
+ "attention_dropout": 0.0,
116
+ "bad_words_ids": null,
117
+ "begin_suppress_tokens": null,
118
+ "bos_token_id": null,
119
+ "chunk_size_feed_forward": 0,
120
+ "cross_attention_hidden_size": null,
121
+ "decoder_start_token_id": null,
122
+ "diversity_penalty": 0.0,
123
+ "do_sample": false,
124
+ "drop_path_rate": 0.0,
125
+ "dropout": 0.0,
126
+ "early_stopping": false,
127
+ "encoder_no_repeat_ngram_size": 0,
128
+ "eos_token_id": null,
129
+ "exponential_decay_length_penalty": null,
130
+ "finetuning_task": null,
131
+ "forced_bos_token_id": null,
132
+ "forced_eos_token_id": null,
133
+ "hidden_act": "gelu",
134
+ "hidden_size": 1024,
135
+ "id2label": {
136
+ "0": "LABEL_0",
137
+ "1": "LABEL_1"
138
+ },
139
+ "image_size": 448,
140
+ "initializer_factor": 1.0,
141
+ "initializer_range": 0.02,
142
+ "intermediate_size": 4096,
143
+ "is_decoder": false,
144
+ "is_encoder_decoder": false,
145
+ "label2id": {
146
+ "LABEL_0": 0,
147
+ "LABEL_1": 1
148
+ },
149
+ "layer_norm_eps": 1e-06,
150
+ "length_penalty": 1.0,
151
+ "max_length": 20,
152
+ "min_length": 0,
153
+ "model_type": "intern_vit_6b",
154
+ "no_repeat_ngram_size": 0,
155
+ "norm_type": "layer_norm",
156
+ "num_attention_heads": 16,
157
+ "num_beam_groups": 1,
158
+ "num_beams": 1,
159
+ "num_channels": 3,
160
+ "num_hidden_layers": 24,
161
+ "num_return_sequences": 1,
162
+ "output_attentions": false,
163
+ "output_hidden_states": false,
164
+ "output_scores": false,
165
+ "pad_token_id": null,
166
+ "patch_size": 14,
167
+ "prefix": null,
168
+ "problem_type": null,
169
+ "pruned_heads": {},
170
+ "qk_normalization": false,
171
+ "qkv_bias": true,
172
+ "remove_invalid_values": false,
173
+ "repetition_penalty": 1.0,
174
+ "return_dict": true,
175
+ "return_dict_in_generate": false,
176
+ "sep_token_id": null,
177
+ "suppress_tokens": null,
178
+ "task_specific_params": null,
179
+ "temperature": 1.0,
180
+ "tf_legacy_loss": false,
181
+ "tie_encoder_decoder": false,
182
+ "tie_word_embeddings": true,
183
+ "tokenizer_class": null,
184
+ "top_k": 50,
185
+ "top_p": 1.0,
186
+ "torch_dtype": "bfloat16",
187
+ "torchscript": false,
188
+ "transformers_version": "4.44.0.dev0",
189
+ "typical_p": 1.0,
190
+ "use_bfloat16": true,
191
+ "use_flash_attn": true
192
+ }
193
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+
67
+ logger.info(f'vision_select_layer: {self.select_layer}')
68
+ logger.info(f'ps_version: {self.ps_version}')
69
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
70
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
71
+
72
+ def to_dict(self):
73
+ """
74
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
75
+
76
+ Returns:
77
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
78
+ """
79
+ output = copy.deepcopy(self.__dict__)
80
+ output['vision_config'] = self.vision_config.to_dict()
81
+ output['llm_config'] = self.llm_config.to_dict()
82
+ output['model_type'] = self.__class__.model_type
83
+ output['use_backbone_lora'] = self.use_backbone_lora
84
+ output['use_llm_lora'] = self.use_llm_lora
85
+ output['select_layer'] = self.select_layer
86
+ output['force_image_size'] = self.force_image_size
87
+ output['downsample_ratio'] = self.downsample_ratio
88
+ output['template'] = self.template
89
+ output['dynamic_image_size'] = self.dynamic_image_size
90
+ output['use_thumbnail'] = self.use_thumbnail
91
+ output['ps_version'] = self.ps_version
92
+ output['min_dynamic_patch'] = self.min_dynamic_patch
93
+ output['max_dynamic_patch'] = self.max_dynamic_patch
94
+
95
+ return output
conversation.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
334
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
335
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
336
+ # Therefore, they are completely equivalent during inference.
337
+ register_conv_template(
338
+ Conversation(
339
+ name='Hermes-2',
340
+ system_template='<|im_start|>system\n{system_message}',
341
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
342
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
343
+ # system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
344
+ system_message='You are a Table Image to LaTeX/Markdown/HMTL Code converter.',
345
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
346
+ sep_style=SeparatorStyle.MPT,
347
+ sep='<|im_end|>',
348
+ stop_token_ids=[
349
+ 2,
350
+ 6,
351
+ 7,
352
+ 8,
353
+ ],
354
+ stop_str='<|endoftext|>',
355
+ )
356
+ )
357
+
358
+
359
+ register_conv_template(
360
+ Conversation(
361
+ name='internlm2-chat',
362
+ system_template='<|im_start|>system\n{system_message}',
363
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
364
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
365
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
366
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
367
+ sep_style=SeparatorStyle.MPT,
368
+ sep='<|im_end|>',
369
+ stop_token_ids=[
370
+ 2,
371
+ 92543,
372
+ 92542
373
+ ]
374
+ )
375
+ )
376
+
377
+
378
+ register_conv_template(
379
+ Conversation(
380
+ name='phi3-chat',
381
+ system_template='<|system|>\n{system_message}',
382
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
383
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
384
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
385
+ roles=('<|user|>\n', '<|assistant|>\n'),
386
+ sep_style=SeparatorStyle.MPT,
387
+ sep='<|end|>',
388
+ stop_token_ids=[
389
+ 2,
390
+ 32000,
391
+ 32007
392
+ ]
393
+ )
394
+ )
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 151644,
5
+ 151645
6
+ ],
7
+ "transformers_version": "4.44.0.dev0"
8
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e16caef36733e9f43421450f6d4d220017a40c4ac2e8a65f86407059a049c930
3
+ size 1876395376
modeling_intern_vit.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_varlen_qkvpacked_func
26
+ has_flash_attn = True
27
+ except:
28
+ print('FlashAttention2 is not installed.')
29
+ has_flash_attn = False
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ class FlashAttention(nn.Module):
35
+ """Implement the scaled dot product attention with softmax.
36
+ Arguments
37
+ ---------
38
+ softmax_scale: The temperature to use for the softmax attention.
39
+ (default: 1/sqrt(d_keys) where d_keys is computed at
40
+ runtime)
41
+ attention_dropout: The dropout rate to apply to the attention
42
+ (default: 0.0)
43
+ """
44
+
45
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
46
+ super().__init__()
47
+ self.softmax_scale = softmax_scale
48
+ self.dropout_p = attention_dropout
49
+
50
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
51
+ max_s=None, need_weights=False):
52
+ """Implements the multihead softmax attention.
53
+ Arguments
54
+ ---------
55
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
56
+ if unpadded: (nnz, 3, h, d)
57
+ key_padding_mask: a bool tensor of shape (B, S)
58
+ """
59
+ assert not need_weights
60
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
61
+ assert qkv.is_cuda
62
+
63
+ if cu_seqlens is None:
64
+ batch_size = qkv.shape[0]
65
+ seqlen = qkv.shape[1]
66
+ if key_padding_mask is None:
67
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
68
+ max_s = seqlen
69
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
70
+ device=qkv.device)
71
+ output = flash_attn_varlen_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
76
+ else:
77
+ nheads = qkv.shape[-2]
78
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
79
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
80
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
81
+ output_unpad = flash_attn_varlen_qkvpacked_func(
82
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
83
+ softmax_scale=self.softmax_scale, causal=causal
84
+ )
85
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
86
+ indices, batch_size, seqlen),
87
+ 'b s (h d) -> b s h d', h=nheads)
88
+ else:
89
+ assert max_s is not None
90
+ output = flash_attn_varlen_qkvpacked_func(
91
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
92
+ softmax_scale=self.softmax_scale, causal=causal
93
+ )
94
+
95
+ return output, None
96
+
97
+
98
+ class InternRMSNorm(nn.Module):
99
+ def __init__(self, hidden_size, eps=1e-6):
100
+ super().__init__()
101
+ self.weight = nn.Parameter(torch.ones(hidden_size))
102
+ self.variance_epsilon = eps
103
+
104
+ def forward(self, hidden_states):
105
+ input_dtype = hidden_states.dtype
106
+ hidden_states = hidden_states.to(torch.float32)
107
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
108
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
109
+ return self.weight * hidden_states.to(input_dtype)
110
+
111
+
112
+ try:
113
+ from apex.normalization import FusedRMSNorm
114
+
115
+ InternRMSNorm = FusedRMSNorm # noqa
116
+
117
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
118
+ except ImportError:
119
+ # using the normal InternRMSNorm
120
+ pass
121
+ except Exception:
122
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
123
+ pass
124
+
125
+
126
+ NORM2FN = {
127
+ 'rms_norm': InternRMSNorm,
128
+ 'layer_norm': nn.LayerNorm,
129
+ }
130
+
131
+
132
+ class InternVisionEmbeddings(nn.Module):
133
+ def __init__(self, config: InternVisionConfig):
134
+ super().__init__()
135
+ self.config = config
136
+ self.embed_dim = config.hidden_size
137
+ self.image_size = config.image_size
138
+ self.patch_size = config.patch_size
139
+
140
+ self.class_embedding = nn.Parameter(
141
+ torch.randn(1, 1, self.embed_dim),
142
+ )
143
+
144
+ self.patch_embedding = nn.Conv2d(
145
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
146
+ )
147
+
148
+ self.num_patches = (self.image_size // self.patch_size) ** 2
149
+ self.num_positions = self.num_patches + 1
150
+
151
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
152
+
153
+ def _get_pos_embed(self, pos_embed, H, W):
154
+ target_dtype = pos_embed.dtype
155
+ pos_embed = pos_embed.float().reshape(
156
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
157
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
158
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
159
+ return pos_embed
160
+
161
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
162
+ target_dtype = self.patch_embedding.weight.dtype
163
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
164
+ batch_size, _, height, width = patch_embeds.shape
165
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
166
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
167
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
168
+ position_embedding = torch.cat([
169
+ self.position_embedding[:, :1, :],
170
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
171
+ ], dim=1)
172
+ embeddings = embeddings + position_embedding.to(target_dtype)
173
+ return embeddings
174
+
175
+
176
+ class InternAttention(nn.Module):
177
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
178
+
179
+ def __init__(self, config: InternVisionConfig):
180
+ super().__init__()
181
+ self.config = config
182
+ self.embed_dim = config.hidden_size
183
+ self.num_heads = config.num_attention_heads
184
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
185
+ if config.use_flash_attn and not has_flash_attn:
186
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
187
+ self.head_dim = self.embed_dim // self.num_heads
188
+ if self.head_dim * self.num_heads != self.embed_dim:
189
+ raise ValueError(
190
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
191
+ f' {self.num_heads}).'
192
+ )
193
+
194
+ self.scale = self.head_dim ** -0.5
195
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
196
+ self.attn_drop = nn.Dropout(config.attention_dropout)
197
+ self.proj_drop = nn.Dropout(config.dropout)
198
+
199
+ self.qk_normalization = config.qk_normalization
200
+
201
+ if self.qk_normalization:
202
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
203
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+
205
+ if self.use_flash_attn:
206
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
207
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
208
+
209
+ def _naive_attn(self, x):
210
+ B, N, C = x.shape
211
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
212
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
213
+
214
+ if self.qk_normalization:
215
+ B_, H_, N_, D_ = q.shape
216
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
217
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+
219
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
220
+ attn = attn.softmax(dim=-1)
221
+ attn = self.attn_drop(attn)
222
+
223
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
224
+ x = self.proj(x)
225
+ x = self.proj_drop(x)
226
+ return x
227
+
228
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
229
+ qkv = self.qkv(x)
230
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
231
+
232
+ if self.qk_normalization:
233
+ q, k, v = qkv.unbind(2)
234
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
235
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
236
+ qkv = torch.stack([q, k, v], dim=2)
237
+
238
+ context, _ = self.inner_attn(
239
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
240
+ )
241
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
242
+ outs = self.proj_drop(outs)
243
+ return outs
244
+
245
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
246
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
247
+ return x
248
+
249
+
250
+ class InternMLP(nn.Module):
251
+ def __init__(self, config: InternVisionConfig):
252
+ super().__init__()
253
+ self.config = config
254
+ self.act = ACT2FN[config.hidden_act]
255
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
256
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
257
+
258
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
259
+ hidden_states = self.fc1(hidden_states)
260
+ hidden_states = self.act(hidden_states)
261
+ hidden_states = self.fc2(hidden_states)
262
+ return hidden_states
263
+
264
+
265
+ class InternVisionEncoderLayer(nn.Module):
266
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
267
+ super().__init__()
268
+ self.embed_dim = config.hidden_size
269
+ self.intermediate_size = config.intermediate_size
270
+ self.norm_type = config.norm_type
271
+
272
+ self.attn = InternAttention(config)
273
+ self.mlp = InternMLP(config)
274
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
275
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+
277
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
278
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
280
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+
282
+ def forward(
283
+ self,
284
+ hidden_states: torch.Tensor,
285
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
286
+ """
287
+ Args:
288
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
289
+ """
290
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
291
+
292
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
293
+
294
+ return hidden_states
295
+
296
+
297
+ class InternVisionEncoder(nn.Module):
298
+ """
299
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
300
+ [`InternEncoderLayer`].
301
+
302
+ Args:
303
+ config (`InternConfig`):
304
+ The corresponding vision configuration for the `InternEncoder`.
305
+ """
306
+
307
+ def __init__(self, config: InternVisionConfig):
308
+ super().__init__()
309
+ self.config = config
310
+ # stochastic depth decay rule
311
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
312
+ self.layers = nn.ModuleList([
313
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
314
+ self.gradient_checkpointing = True
315
+
316
+ def forward(
317
+ self,
318
+ inputs_embeds,
319
+ output_hidden_states: Optional[bool] = None,
320
+ return_dict: Optional[bool] = None,
321
+ ) -> Union[Tuple, BaseModelOutput]:
322
+ r"""
323
+ Args:
324
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
325
+ Embedded representation of the inputs. Should be float, not int tokens.
326
+ output_hidden_states (`bool`, *optional*):
327
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
328
+ for more detail.
329
+ return_dict (`bool`, *optional*):
330
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
331
+ """
332
+ output_hidden_states = (
333
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
334
+ )
335
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
336
+
337
+ encoder_states = () if output_hidden_states else None
338
+ hidden_states = inputs_embeds
339
+
340
+ for idx, encoder_layer in enumerate(self.layers):
341
+ if output_hidden_states:
342
+ encoder_states = encoder_states + (hidden_states,)
343
+ if self.gradient_checkpointing and self.training:
344
+ layer_outputs = torch.utils.checkpoint.checkpoint(
345
+ encoder_layer,
346
+ hidden_states)
347
+ else:
348
+ layer_outputs = encoder_layer(
349
+ hidden_states,
350
+ )
351
+ hidden_states = layer_outputs
352
+
353
+ if output_hidden_states:
354
+ encoder_states = encoder_states + (hidden_states,)
355
+
356
+ if not return_dict:
357
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
358
+ return BaseModelOutput(
359
+ last_hidden_state=hidden_states, hidden_states=encoder_states
360
+ )
361
+
362
+
363
+ class InternVisionModel(PreTrainedModel):
364
+ main_input_name = 'pixel_values'
365
+ _supports_flash_attn_2 = True
366
+ config_class = InternVisionConfig
367
+ _no_split_modules = ['InternVisionEncoderLayer']
368
+
369
+ def __init__(self, config: InternVisionConfig):
370
+ super().__init__(config)
371
+ self.config = config
372
+
373
+ self.embeddings = InternVisionEmbeddings(config)
374
+ self.encoder = InternVisionEncoder(config)
375
+
376
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
377
+ pos_emb = self.embeddings.position_embedding
378
+ _, num_positions, embed_dim = pos_emb.shape
379
+ cls_emb = pos_emb[:, :1, :]
380
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
381
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
382
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
383
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
384
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
385
+ self.embeddings.image_size = new_size
386
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
387
+
388
+ def get_input_embeddings(self):
389
+ return self.embeddings
390
+
391
+ def forward(
392
+ self,
393
+ pixel_values: Optional[torch.FloatTensor] = None,
394
+ output_hidden_states: Optional[bool] = None,
395
+ return_dict: Optional[bool] = None,
396
+ pixel_embeds: Optional[torch.FloatTensor] = None,
397
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
398
+ output_hidden_states = (
399
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
400
+ )
401
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
402
+
403
+ if pixel_values is None and pixel_embeds is None:
404
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
405
+
406
+ if pixel_embeds is not None:
407
+ hidden_states = pixel_embeds
408
+ else:
409
+ if len(pixel_values.shape) == 4:
410
+ hidden_states = self.embeddings(pixel_values)
411
+ else:
412
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
413
+ encoder_outputs = self.encoder(
414
+ inputs_embeds=hidden_states,
415
+ output_hidden_states=output_hidden_states,
416
+ return_dict=return_dict,
417
+ )
418
+ last_hidden_state = encoder_outputs.last_hidden_state
419
+ pooled_output = last_hidden_state[:, 0, :]
420
+
421
+ if not return_dict:
422
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
423
+
424
+ return BaseModelOutputWithPooling(
425
+ last_hidden_state=last_hidden_state,
426
+ pooler_output=pooled_output,
427
+ hidden_states=encoder_outputs.hidden_states,
428
+ attentions=encoder_outputs.attentions,
429
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ import transformers
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
+ Qwen2ForCausalLM)
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_internvl_chat import InternVLChatConfig
20
+ from .conversation import get_conv_template
21
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ def version_cmp(v1, v2, op='eq'):
27
+ import operator
28
+
29
+ from packaging import version
30
+ op_func = getattr(operator, op)
31
+ return op_func(version.parse(v1), version.parse(v2))
32
+
33
+
34
+ class InternVLChatModel(PreTrainedModel):
35
+ config_class = InternVLChatConfig
36
+ main_input_name = 'pixel_values'
37
+ _supports_flash_attn_2 = True
38
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
39
+
40
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
41
+ super().__init__(config)
42
+
43
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
44
+ image_size = config.force_image_size or config.vision_config.image_size
45
+ patch_size = config.vision_config.patch_size
46
+ self.patch_size = patch_size
47
+ self.select_layer = config.select_layer
48
+ self.template = config.template
49
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
50
+ self.downsample_ratio = config.downsample_ratio
51
+ self.ps_version = config.ps_version
52
+ use_flash_attn = use_flash_attn if has_flash_attn else False
53
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
54
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
55
+
56
+ logger.info(f'num_image_token: {self.num_image_token}')
57
+ logger.info(f'ps_version: {self.ps_version}')
58
+ if vision_model is not None:
59
+ self.vision_model = vision_model
60
+ else:
61
+ self.vision_model = InternVisionModel(config.vision_config)
62
+ if language_model is not None:
63
+ self.language_model = language_model
64
+ else:
65
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
66
+ self.language_model = LlamaForCausalLM(config.llm_config)
67
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
68
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
69
+ else:
70
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
71
+
72
+ vit_hidden_size = config.vision_config.hidden_size
73
+ llm_hidden_size = config.llm_config.hidden_size
74
+
75
+ self.mlp1 = nn.Sequential(
76
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
77
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
78
+ nn.GELU(),
79
+ nn.Linear(llm_hidden_size, llm_hidden_size)
80
+ )
81
+
82
+ self.img_context_token_id = 151648
83
+ self.conv_template = get_conv_template(self.template)
84
+ self.system_message = self.conv_template.system_message
85
+
86
+ def forward(
87
+ self,
88
+ pixel_values: torch.FloatTensor,
89
+ input_ids: torch.LongTensor = None,
90
+ attention_mask: Optional[torch.Tensor] = None,
91
+ position_ids: Optional[torch.LongTensor] = None,
92
+ image_flags: Optional[torch.LongTensor] = None,
93
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
94
+ labels: Optional[torch.LongTensor] = None,
95
+ use_cache: Optional[bool] = None,
96
+ output_attentions: Optional[bool] = None,
97
+ output_hidden_states: Optional[bool] = None,
98
+ return_dict: Optional[bool] = None,
99
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
100
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
101
+
102
+ image_flags = image_flags.squeeze(0)
103
+ pixel_values = pixel_values.squeeze(0)
104
+
105
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
106
+
107
+ vit_embeds = self.extract_feature(pixel_values)
108
+ vit_embeds = vit_embeds[image_flags == 1]
109
+ vit_batch_size = pixel_values.shape[0]
110
+
111
+ B, N, C = input_embeds.shape
112
+ input_embeds = input_embeds.reshape(B * N, C)
113
+
114
+ # if torch.distributed.get_rank() == 0:
115
+ # print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
116
+
117
+ input_ids = input_ids.reshape(B * N)
118
+ selected = (input_ids == self.img_context_token_id)
119
+
120
+ try:
121
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
122
+ except Exception as e:
123
+ vit_embeds = vit_embeds.reshape(-1, C)
124
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
125
+ f'vit_embeds.shape={vit_embeds.shape}')
126
+ n_token = selected.sum()
127
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
128
+
129
+ input_embeds = input_embeds.reshape(B, N, C)
130
+
131
+ outputs = self.language_model(
132
+ inputs_embeds=input_embeds,
133
+ attention_mask=attention_mask,
134
+ position_ids=position_ids,
135
+ past_key_values=past_key_values,
136
+ use_cache=use_cache,
137
+ output_attentions=output_attentions,
138
+ output_hidden_states=output_hidden_states,
139
+ return_dict=return_dict,
140
+ )
141
+ logits = outputs.logits
142
+
143
+ loss = None
144
+ if labels is not None:
145
+ # Shift so that tokens < n predict n
146
+ shift_logits = logits[..., :-1, :].contiguous()
147
+ shift_labels = labels[..., 1:].contiguous()
148
+ # Flatten the tokens
149
+ loss_fct = CrossEntropyLoss()
150
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
151
+ shift_labels = shift_labels.view(-1)
152
+ # Enable model parallelism
153
+ shift_labels = shift_labels.to(shift_logits.device)
154
+ loss = loss_fct(shift_logits, shift_labels)
155
+
156
+ if not return_dict:
157
+ output = (logits,) + outputs[1:]
158
+ return (loss,) + output if loss is not None else output
159
+
160
+ return CausalLMOutputWithPast(
161
+ loss=loss,
162
+ logits=logits,
163
+ past_key_values=outputs.past_key_values,
164
+ hidden_states=outputs.hidden_states,
165
+ attentions=outputs.attentions,
166
+ )
167
+
168
+ def pixel_shuffle(self, x, scale_factor=0.5):
169
+ n, w, h, c = x.size()
170
+ # N, W, H, C --> N, W, H * scale, C // scale
171
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
172
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
173
+ x = x.permute(0, 2, 1, 3).contiguous()
174
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
175
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
176
+ int(c / (scale_factor * scale_factor)))
177
+ if self.ps_version == 'v1':
178
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
179
+ 'which results in a transposed image.')
180
+ else:
181
+ x = x.permute(0, 2, 1, 3).contiguous()
182
+ return x
183
+
184
+ def extract_feature(self, pixel_values):
185
+ if self.select_layer == -1:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=False,
189
+ return_dict=True).last_hidden_state
190
+ else:
191
+ vit_embeds = self.vision_model(
192
+ pixel_values=pixel_values,
193
+ output_hidden_states=True,
194
+ return_dict=True).hidden_states[self.select_layer]
195
+ vit_embeds = vit_embeds[:, 1:, :]
196
+
197
+ h = w = int(vit_embeds.shape[1] ** 0.5)
198
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
199
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
200
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
201
+ vit_embeds = self.mlp1(vit_embeds)
202
+ return vit_embeds
203
+
204
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
205
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
206
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
207
+ if history is not None or return_history:
208
+ print('Now multi-turn chat is not supported in batch_chat.')
209
+ raise NotImplementedError
210
+
211
+ if image_counts is not None:
212
+ num_patches_list = image_counts
213
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
214
+
215
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
216
+ self.img_context_token_id = img_context_token_id
217
+
218
+ if verbose and pixel_values is not None:
219
+ image_bs = pixel_values.shape[0]
220
+ print(f'dynamic ViT batch size: {image_bs}')
221
+
222
+ queries = []
223
+ for idx, num_patches in enumerate(num_patches_list):
224
+ question = questions[idx]
225
+ if pixel_values is not None and '<image>' not in question:
226
+ question = '<image>\n' + question
227
+ template = get_conv_template(self.template)
228
+ template.system_message = self.system_message
229
+ template.append_message(template.roles[0], question)
230
+ template.append_message(template.roles[1], None)
231
+ query = template.get_prompt()
232
+
233
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
234
+ query = query.replace('<image>', image_tokens, 1)
235
+ queries.append(query)
236
+
237
+ tokenizer.padding_side = 'left'
238
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
239
+ input_ids = model_inputs['input_ids'].cuda()
240
+ attention_mask = model_inputs['attention_mask'].cuda()
241
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
242
+ generation_config['eos_token_id'] = eos_token_id
243
+ generation_output = self.generate(
244
+ pixel_values=pixel_values,
245
+ input_ids=input_ids,
246
+ attention_mask=attention_mask,
247
+ **generation_config
248
+ )
249
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
250
+ responses = [response.split(template.sep)[0].strip() for response in responses]
251
+ return responses
252
+
253
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
254
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
255
+ verbose=False):
256
+
257
+ if history is None and pixel_values is not None and '<image>' not in question:
258
+ question = '<image>\n' + question
259
+
260
+ if num_patches_list is None:
261
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
+
264
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
+ self.img_context_token_id = img_context_token_id
266
+
267
+ template = get_conv_template(self.template)
268
+ template.system_message = self.system_message
269
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
270
+
271
+ history = [] if history is None else history
272
+ for (old_question, old_answer) in history:
273
+ template.append_message(template.roles[0], old_question)
274
+ template.append_message(template.roles[1], old_answer)
275
+ template.append_message(template.roles[0], question)
276
+ template.append_message(template.roles[1], None)
277
+ query = template.get_prompt()
278
+
279
+ if verbose and pixel_values is not None:
280
+ image_bs = pixel_values.shape[0]
281
+ print(f'dynamic ViT batch size: {image_bs}')
282
+
283
+ for num_patches in num_patches_list:
284
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
285
+ query = query.replace('<image>', image_tokens, 1)
286
+
287
+ model_inputs = tokenizer(query, return_tensors='pt')
288
+ input_ids = model_inputs['input_ids'].cuda()
289
+ attention_mask = model_inputs['attention_mask'].cuda()
290
+ generation_config['eos_token_id'] = eos_token_id
291
+
292
+ generation_output = self.generate(
293
+ pixel_values=pixel_values,
294
+ input_ids=input_ids,
295
+ attention_mask=attention_mask,
296
+ **generation_config
297
+ )
298
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
299
+ response = response.split(template.sep)[0].strip()
300
+ history.append((question, response))
301
+ if return_history:
302
+ return response, history
303
+ else:
304
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
305
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
306
+ if verbose:
307
+ print(query_to_print, response)
308
+ return response
309
+
310
+ @torch.no_grad()
311
+ def generate(
312
+ self,
313
+ pixel_values: Optional[torch.FloatTensor] = None,
314
+ input_ids: Optional[torch.FloatTensor] = None,
315
+ attention_mask: Optional[torch.LongTensor] = None,
316
+ visual_features: Optional[torch.FloatTensor] = None,
317
+ generation_config: Optional[GenerationConfig] = None,
318
+ output_hidden_states: Optional[bool] = None,
319
+ return_dict: Optional[bool] = None,
320
+ img_context_token_id: Optional[bool] = None,
321
+ **generate_kwargs,
322
+ ) -> torch.LongTensor:
323
+ if img_context_token_id is not None:
324
+ self.img_context_token_id = img_context_token_id
325
+
326
+ assert self.img_context_token_id is not None
327
+ if pixel_values is not None:
328
+ if visual_features is not None:
329
+ vit_embeds = visual_features
330
+ else:
331
+ vit_embeds = self.extract_feature(pixel_values)
332
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
333
+ B, N, C = input_embeds.shape
334
+ input_embeds = input_embeds.reshape(B * N, C)
335
+
336
+ input_ids = input_ids.reshape(B * N)
337
+ selected = (input_ids == self.img_context_token_id)
338
+ assert selected.sum() != 0
339
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
340
+
341
+ input_embeds = input_embeds.reshape(B, N, C)
342
+ else:
343
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
344
+
345
+ outputs = self.language_model.generate(
346
+ inputs_embeds=input_embeds,
347
+ attention_mask=attention_mask,
348
+ generation_config=generation_config,
349
+ output_hidden_states=output_hidden_states,
350
+ return_dict=return_dict,
351
+ use_cache=True,
352
+ **generate_kwargs,
353
+ )
354
+
355
+ return outputs
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<img>",
6
+ "</img>",
7
+ "<IMG_CONTEXT>",
8
+ "<quad>",
9
+ "</quad>",
10
+ "<ref>",
11
+ "</ref>",
12
+ "<box>",
13
+ "</box>"
14
+ ],
15
+ "eos_token": {
16
+ "content": "<|im_end|>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ }
29
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_eos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<img>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "</img>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<IMG_CONTEXT>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<quad>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "</quad>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<ref>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "</ref>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<box>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "</box>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ }
101
+ },
102
+ "additional_special_tokens": [
103
+ "<|im_start|>",
104
+ "<|im_end|>",
105
+ "<img>",
106
+ "</img>",
107
+ "<IMG_CONTEXT>",
108
+ "<quad>",
109
+ "</quad>",
110
+ "<ref>",
111
+ "</ref>",
112
+ "<box>",
113
+ "</box>"
114
+ ],
115
+ "bos_token": null,
116
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
117
+ "clean_up_tokenization_spaces": false,
118
+ "eos_token": "<|im_end|>",
119
+ "errors": "replace",
120
+ "model_max_length": 8192,
121
+ "pad_token": "<|endoftext|>",
122
+ "split_special_tokens": false,
123
+ "tokenizer_class": "Qwen2Tokenizer",
124
+ "unk_token": null
125
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff