File size: 3,088 Bytes
0748be5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.91
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3129
- Accuracy: 0.91

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8831        | 1.0   | 112  | 0.6815          | 0.77     |
| 0.4558        | 2.0   | 225  | 0.5726          | 0.77     |
| 0.3592        | 3.0   | 337  | 0.6134          | 0.79     |
| 0.021         | 4.0   | 450  | 0.7918          | 0.82     |
| 0.0363        | 5.0   | 562  | 0.5338          | 0.88     |
| 0.0011        | 6.0   | 675  | 0.4322          | 0.91     |
| 0.0004        | 7.0   | 787  | 0.4149          | 0.9      |
| 0.0163        | 8.0   | 900  | 0.5259          | 0.89     |
| 0.1556        | 9.0   | 1012 | 0.3010          | 0.91     |
| 0.0001        | 10.0  | 1125 | 0.2829          | 0.94     |
| 0.0001        | 11.0  | 1237 | 0.3811          | 0.9      |
| 0.0001        | 12.0  | 1350 | 0.3358          | 0.91     |
| 0.0001        | 13.0  | 1462 | 0.3414          | 0.9      |
| 0.0001        | 14.0  | 1575 | 0.3231          | 0.9      |
| 0.0001        | 15.0  | 1687 | 0.3166          | 0.9      |
| 0.0           | 16.0  | 1800 | 0.3140          | 0.91     |
| 0.0           | 17.0  | 1912 | 0.3128          | 0.91     |
| 0.0           | 18.0  | 2025 | 0.3118          | 0.91     |
| 0.0           | 19.0  | 2137 | 0.3133          | 0.91     |
| 0.0           | 19.91 | 2240 | 0.3129          | 0.91     |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1