|
import torch |
|
from transformers import PreTrainedModel, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, TextClassificationPipeline |
|
from configuration_kraken import KrakenConfig |
|
import tokenizer_template_switch |
|
|
|
class KrakenForCausalLM(PreTrainedModel): |
|
config_class = KrakenConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.tokenizers = {key: AutoTokenizer.from_pretrained(name, device_map="auto") for key, name in config.config_dict['tokenizers'].items()} |
|
self.models = self.load_expert_models(config.config_dict['models'], config.config_dict['quantization']) |
|
self.router_model = AutoModelForSequenceClassification.from_pretrained(config.config_dict['router'], trust_remote_code=True,device_map="auto") |
|
self.tokenizer = AutoTokenizer.from_pretrained(config.config_dict['router'], trust_remote_code=True,device_map="auto") |
|
self.router = TextClassificationPipeline(model=self.router_model, tokenizer=self.tokenizer) |
|
self.models_indices = config.config_dict['class_indices'] |
|
|
|
def load_expert_models(self, models_dict, quantization_dict): |
|
models = {} |
|
for key, name in models_dict.items(): |
|
quantization = quantization_dict.get(key) |
|
if quantization == "8bit": |
|
models[key] = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto", load_in_8bit=True, torch_dtype="auto") |
|
elif quantization == "4bit": |
|
models[key] = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto", load_in_4bit=True, torch_dtype="auto") |
|
elif quantization == "awq": |
|
models[key] = self.load_awq_model(name) |
|
else: |
|
models[key] = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto", torch_dtype="auto") |
|
return models |
|
|
|
def load_awq_model(self, name): |
|
return AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto") |
|
|
|
def tokenize_inputs(self, text, model_key): |
|
return self.tokenizers[model_key](text, return_tensors="pt") |
|
|
|
def determine_model(self, text): |
|
prediction = self.router(text)[0]["label"] |
|
model_decision_index = self.models_indices[prediction] |
|
model_keys = ['expert1', 'expert2', 'expert3', 'expert4','expert5'] |
|
return model_keys[model_decision_index] |
|
|
|
|
|
def generate(self, input_ids, **generate_kwargs): |
|
|
|
text = self.tokenizer.batch_decode(input_ids, skip_special_tokens=False)[0] |
|
|
|
msgs = tokenizer_template_switch.recover_chat_messages(text, self.tokenizer) |
|
if msgs and msgs[0]['role'] == 'system' and msgs[0]['content']=='<|im_start|>system': |
|
|
|
msgs.pop(0) |
|
|
|
if msgs and msgs[-1]['role'] == 'assistant': |
|
|
|
msgs.pop() |
|
|
|
|
|
model_key = self.determine_model(text) |
|
|
|
print(f"Choosing {model_key} ..") |
|
|
|
model = self.models[model_key] |
|
|
|
mod_txt = self.tokenizers[model_key].apply_chat_template(msgs, tokenize=False, add_generation_prompt=True) |
|
current_device = input_ids.device if isinstance(input_ids, torch.Tensor) else 'cpu' |
|
|
|
|
|
|
|
tok = self.tokenizers[model_key](mod_txt, return_tensors="pt") |
|
tok_input_ids = tok.input_ids.to(current_device) |
|
tok_attention_mask = tok.attention_mask.to(current_device) |
|
|
|
|
|
|
|
output_ids = model.generate(tok_input_ids, attention_mask=tok_attention_mask, **generate_kwargs) |
|
|
|
|
|
decoded_text = self.tokenizers[model_key].decode(output_ids[0], skip_special_tokens=True) |
|
|
|
|
|
retokenized_ids = self.tokenizer(decoded_text, return_tensors="pt").input_ids.to(current_device) |
|
|
|
return retokenized_ids |
|
|
|
|
|
|