DavidGF commited on
Commit
85679c7
·
verified ·
1 Parent(s): e1320e1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ - it
6
+ - fr
7
+ - da
8
+ - sv
9
+ - fi
10
+ - 'no'
11
+ ---
12
+ ![Kraken](https://vago-solutions.de/wp-content/uploads/2024/05/Kraken_Pic-multi.png "Kraken-Multilingual")
13
+
14
+
15
+ ## Overview
16
+
17
+ The Kraken-Multilingual model and Architecture **Kraken** is a **joint effort** between **Cognitive Computations**, **VAGO Solutions** and **Hyperspace.ai.**
18
+
19
+ Created by **Fernando Fernandes Neto**, **David Golchinfar**, **Lucas Atkins** and **Eric Hartford**
20
+
21
+ The Kraken-Multilingual model supports German, English, Italian, French, Swedish, Finnish, Danish and Norwegian language.
22
+
23
+ The Kraken Architecture is a sophisticated machine learning framework designed for dynamic text generation tasks. It utilizes the Hugging Face transformers library to orchestrate multiple causal language models (CLMs) and intelligently route input through different models based on the context and content of the input text. The architecture is powered by a custom configuration class (KrakenConfig) that facilitates the integration and management of various components such as tokenizers, models, and routing mechanisms.
24
+
25
+ ## Features
26
+
27
+ Dynamic Model Routing: Uses a sequence classification model to route inputs to the most suitable language model based on the input's characteristics.
28
+ Multiple Language Models: Supports integration of various pre-trained causal language models, allowing for flexible, context-appropriate responses.
29
+ Customizable Templates: Includes support for input formatting using predefined templates, enhancing the model's adaptability to different conversational contexts.
30
+ Extensible Configuration: Leverages a custom configuration setup that can be easily extended and adapted for various use cases involving causal language modeling.
31
+
32
+ ## Selected Models as Experts:
33
+ ```
34
+ "German/English Expert": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
35
+ "Function Italian Expert": "mii-community/zefiro-7b-dpo-ITA",
36
+ "French Expert": "paulml/Hermes-2-Pro-French",
37
+ "Scandinavian Expert": "norallm/normistral-7b-warm-instruct",
38
+ ```
39
+
40
+ **How to load and call Kraken-Multilingual model :**
41
+ ```
42
+ from transformers import AutoConfig, AutoModelForCausalLM
43
+ from configuration_kraken import KrakenConfig
44
+ from modeling_kraken import KrakenForCausalLM
45
+
46
+ AutoConfig.register("kraken", KrakenConfig)
47
+ AutoModelForCausalLM.register(KrakenConfig, KrakenForCausalLM)
48
+
49
+ device = "cuda:0" ## Setup "cuda:0" if NVIDIA, "mps" if on Mac
50
+
51
+ # Load the model and config:
52
+ config = AutoConfig.from_pretrained("./kraken_model")
53
+ model = AutoModelForCausalLM.from_pretrained("./kraken_model", config=config, trust_remote_code=True)
54
+ ```
55
+
56
+ # Call the German expert:
57
+ ```
58
+ messages = [
59
+ {'role': 'system', 'content': 'Du bist ein freundlicher und hilfreicher deutscher KI-Assistent'},
60
+ {'role': 'user', 'content': "Erzähle mir eine kurze Gute Nacht Geschichte in 2 Sätzen."}
61
+ ]
62
+
63
+ tokenizer = model.tokenizer
64
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
65
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda:0")
66
+ output_ids = model.generate(input_ids, max_length=150)
67
+ print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
68
+ ```
69
+
70
+
71
+
72
+ # Call the English expert:
73
+ ```
74
+ messages = [
75
+ {'role': 'system', 'content': '"You are a helpful AI Assistant'},
76
+ {'role': 'user', 'content': "Find the mass percentage of Ba in BaO"}
77
+ ]
78
+
79
+ tokenizer = model.tokenizer
80
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
81
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
82
+ output_ids = model.generate(input_ids, max_length=250)
83
+ print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
84
+ ```
85
+
86
+ # Call the Italian expert:
87
+ ```
88
+ messages = [
89
+ {'role': 'system', 'content': 'Sei un utile assistente AI.'},
90
+ {'role': 'user', 'content': 'Hai qualche idea su cosa potrei fare a Roma?''}
91
+ ]
92
+
93
+ tokenizer = model.tokenizer
94
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
95
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
96
+ output_ids = model.generate(input_ids ,temperature=0.6, do_sample=True, top_p=0.9,top_k=20, max_length=500)
97
+ print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
98
+ ```
99
+
100
+ # Call the French expert:
101
+ ```
102
+ messages = [
103
+ {'role': 'system', 'content': 'Vous êtes un assistant IA allemand sympathique et serviable'},
104
+ {'role': 'user', 'content': 'J'aimerais faire du shopping à Paris. Que pouvez-vous recommander?'}
105
+ ]
106
+
107
+ tokenizer = model.tokenizer
108
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
109
+ print(input_text)
110
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
111
+ output_ids = model.generate(input_ids ,temperature=0.6, do_sample=True, top_p=0.9,top_k=20, max_length=250)
112
+ print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
113
+ ```
114
+
115
+ # Call the Scandinavian expert:
116
+ ```
117
+ messages = [
118
+ {'role': 'system', 'content': 'Du är en hjälpsam AI-assistent'},
119
+ {'role': 'user', 'content': 'Jag kommer från Tyskland och skulle vilja resa till Sverige. Är en färja över Danmark ett bra sätt att resa?'}
120
+ ]
121
+
122
+ tokenizer = model.tokenizer
123
+ input_text = tokenizer.apply_chat_template(messages, tokenize=False)
124
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
125
+ output_ids = model.generate(input_ids ,temperature=0.1, do_sample=True, top_p=0.9,top_k=20, max_length=250)
126
+ print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
127
+ ```
128
+
129
+
130
+ # Switch expert and or quantization:
131
+ Go into the config file of the kraken_model folder
132
+ ```
133
+ "models": {
134
+ "expert1": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct", # Switch to a german/english model of your choice
135
+ "expert2": "mii-community/zefiro-7b-dpo-ITA", # Switch to a italian model of your choice
136
+ "expert3": "paulml/Hermes-2-Pro-French", # Switch to a french model of your choice
137
+ "expert4": "norallm/normistral-7b-warm-instruct" # Switch to a scandinavian model of your choice
138
+ },
139
+ # Currently supported: "4bit","8bit" and "awq"
140
+ "quantization": {
141
+ "expert1": null,
142
+ "expert2": null,
143
+ "expert3": null,
144
+ "expert4": null
145
+ },
146
+ "router": "kraken_router",
147
+ # Adjust the tokenizer to your selected model
148
+ "tokenizers": {
149
+ "expert1": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
150
+ "expert2": "mii-community/zefiro-7b-dpo-ITA",
151
+ "expert3": "paulml/Hermes-2-Pro-French",
152
+ "expert4": "norallm/normistral-7b-warm-instruct"
153
+ }
154
+ },
155
+ "model_type": "kraken",
156
+ "torch_dtype": "float32",
157
+ "transformers_version": "4.41.0"
158
+ }
159
+
160
+
161
+ ```
162
+
163
+ ## Cite As
164
+
165
+ Fernando Fernandes Neto, David Golchinfar, Lucas Atkins, Eric Hartford - [Kraken: An OpenSource Collection of Experts Model, 2024](https://github.com/cognitivecomputations/kraken)