VERSIL91 commited on
Commit
c452eef
·
verified ·
1 Parent(s): b7cd4d2

End of training

Browse files
Files changed (2) hide show
  1. README.md +166 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: openlm-research/open_llama_3b
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: e1c69af3-42c7-47f0-90c4-2227c25cb500
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ accelerate_config:
22
+ dynamo_backend: inductor
23
+ mixed_precision: bf16
24
+ num_machines: 1
25
+ num_processes: auto
26
+ use_cpu: false
27
+ adapter: lora
28
+ base_model: openlm-research/open_llama_3b
29
+ bf16: auto
30
+ chat_template: llama3
31
+ dataset_prepared_path: null
32
+ datasets:
33
+ - data_files:
34
+ - 39b99dad7327a52e_train_data.json
35
+ ds_type: json
36
+ format: custom
37
+ path: /workspace/input_data/39b99dad7327a52e_train_data.json
38
+ type:
39
+ field_instruction: question
40
+ field_output: answerKey
41
+ format: '{instruction}'
42
+ no_input_format: '{instruction}'
43
+ system_format: '{system}'
44
+ system_prompt: ''
45
+ debug: null
46
+ deepspeed: null
47
+ device_map: auto
48
+ early_stopping_patience: null
49
+ eval_max_new_tokens: 128
50
+ eval_table_size: null
51
+ evals_per_epoch: 4
52
+ flash_attention: false
53
+ fp16: null
54
+ fsdp: null
55
+ fsdp_config: null
56
+ gradient_accumulation_steps: 16
57
+ gradient_checkpointing: true
58
+ group_by_length: false
59
+ hub_model_id: VERSIL91/e1c69af3-42c7-47f0-90c4-2227c25cb500
60
+ hub_repo: null
61
+ hub_strategy: checkpoint
62
+ hub_token: null
63
+ learning_rate: 0.0001
64
+ local_rank: null
65
+ logging_steps: 1
66
+ lora_alpha: 16
67
+ lora_dropout: 0.05
68
+ lora_fan_in_fan_out: null
69
+ lora_model_dir: null
70
+ lora_r: 8
71
+ lora_target_linear: true
72
+ lora_target_modules:
73
+ - q_proj
74
+ - v_proj
75
+ lr_scheduler: cosine
76
+ max_memory:
77
+ 0: 70GiB
78
+ max_steps: 5
79
+ micro_batch_size: 2
80
+ mlflow_experiment_name: /tmp/39b99dad7327a52e_train_data.json
81
+ model_type: AutoModelForCausalLM
82
+ num_epochs: 1
83
+ optimizer: adamw_bnb_8bit
84
+ output_dir: miner_id_24
85
+ pad_to_sequence_len: true
86
+ quantization_config:
87
+ llm_int8_enable_fp32_cpu_offload: true
88
+ load_in_8bit: true
89
+ resume_from_checkpoint: null
90
+ s2_attention: null
91
+ sample_packing: false
92
+ saves_per_epoch: 4
93
+ sequence_len: 512
94
+ special_tokens:
95
+ pad_token: </s>
96
+ strict: false
97
+ tf32: false
98
+ tokenizer_type: AutoTokenizer
99
+ torch_compile: true
100
+ train_on_inputs: false
101
+ trust_remote_code: true
102
+ val_set_size: 0.05
103
+ wandb_entity: null
104
+ wandb_mode: online
105
+ wandb_name: e1c69af3-42c7-47f0-90c4-2227c25cb500
106
+ wandb_project: Gradients-On-Demand
107
+ wandb_run: your_name
108
+ wandb_runid: e1c69af3-42c7-47f0-90c4-2227c25cb500
109
+ warmup_steps: 10
110
+ weight_decay: 0.0
111
+ xformers_attention: null
112
+
113
+ ```
114
+
115
+ </details><br>
116
+
117
+ # e1c69af3-42c7-47f0-90c4-2227c25cb500
118
+
119
+ This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset.
120
+ It achieves the following results on the evaluation set:
121
+ - Loss: 8.5680
122
+
123
+ ## Model description
124
+
125
+ More information needed
126
+
127
+ ## Intended uses & limitations
128
+
129
+ More information needed
130
+
131
+ ## Training and evaluation data
132
+
133
+ More information needed
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 0.0001
141
+ - train_batch_size: 2
142
+ - eval_batch_size: 2
143
+ - seed: 42
144
+ - gradient_accumulation_steps: 16
145
+ - total_train_batch_size: 32
146
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 10
149
+ - training_steps: 5
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | 8.7401 | 0.0265 | 1 | 8.8195 |
156
+ | 8.0147 | 0.0530 | 2 | 8.6892 |
157
+ | 8.1883 | 0.1060 | 4 | 8.5680 |
158
+
159
+
160
+ ### Framework versions
161
+
162
+ - PEFT 0.13.2
163
+ - Transformers 4.46.0
164
+ - Pytorch 2.5.0+cu124
165
+ - Datasets 3.0.1
166
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb11da591fd2fc0cc25ec48e71f3b399fab677589986f31e3fd4e929620fa497
3
+ size 50982842