VaidikML0508 commited on
Commit
9e13d0b
·
verified ·
1 Parent(s): 0665c55

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 240.55 +/- 42.84
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 271.18 +/- 15.57
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7911a7640c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7911a7640ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7911a7640d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7911a7640dc0>", "_build": "<function ActorCriticPolicy._build at 0x7911a7640e50>", "forward": "<function ActorCriticPolicy.forward at 0x7911a7640ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7911a7640f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7911a7641000>", "_predict": "<function ActorCriticPolicy._predict at 0x7911a7641090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7911a7641120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7911a76411b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7911a7641240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7911a75ab700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732712718477067305, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDu3r0CZTc+Zy6ZPrQCaL6twtA9R69EPQAAAAAAAAAATQd5vVwfDrpR2Y2zbInTrqQXErvWQMgzAACAPwAAgD8AwjW9sq4ZPlatQD0HwmK+tBaBO16oTj0AAAAAAAAAAIC3cL0fBc638KEWuuvdpLTLDm26zhwzOQAAAAAAAIA/yp/kvldhJz8YmRo+QK6Kvkn+J769poi8AAAAAAAAAACN2dy9hxaRP+A8jL6jPK6+gGn8vWukaL0AAAAAAAAAAIDkGb3DEVY7ZMrIPSbYir7azRo9mpnBugAAAAAAAAAAzdIRvU/DULywdh68NckUPXk/vD3LUey9AACAPwAAgD/N3D+7GbWDPz0iBLz0hLK+YleZPKPecLsAAAAAAAAAAFPfDz4kr/0+J/4+vs/onr7XpIw94JmavQAAAAAAAAAAM3zKvEiTrrpaXYe5XqF7tAUZ9jmGAJs4AACAPwAAgD9TZxq+iXE1P/DOVLsRcJa+aVQjvZ60Bj0AAAAAAAAAAAVli77iHx4//xJFPjQthL4/B4i9Kj4uPQAAAAAAAAAAw0OzPvBgTD/e+O+8IV3pvmYVSD5q/Na9AAAAAAAAAAD6Qio+FAXYvNa4ML5Txwe+IM09vnZZ074AAIA/AACAP40BkL1IC6a6ic1HOgTsNTWauG26poJluQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6Fyc0+C9SMAWyUTSgBjAF0lEdAlKxewPiDNHV9lChoBkdAcADg4wRGt2gHTUkBaAhHQJSs4AwPAfx1fZQoaAZHQG8xC6pYLb5oB009AWgIR0CUrREPDpC8dX2UKGgGR0BvF0DZDiOvaAdNIwFoCEdAlK5nqNZNf3V9lChoBkdAcF3gDRtxdmgHTUQBaAhHQJSuv9ycTal1fZQoaAZHQG9M0/OdGy5oB01ZAWgIR0CUsAucc2itdX2UKGgGR0BtTMSh8IAwaAdNHgFoCEdAlLC/cvduYXV9lChoBkdAcSRROk+HJ2gHTSUBaAhHQJSxBHhCMP11fZQoaAZHQHCyPqTr3TNoB00lAWgIR0CUsUSF49owdX2UKGgGR0BvQMCHRCyAaAdNOAFoCEdAlLG3dfsu4HV9lChoBkdAcLODw6QvH2gHTSQBaAhHQJSx3MlkYoB1fZQoaAZHQG4EraM72ctoB00oAWgIR0CUsf4nWrfcdX2UKGgGR0BwJTHYHxBmaAdNLgFoCEdAlLJVVcUuc3V9lChoBkdAcSDR7JGOMmgHTSkBaAhHQJSylZOi35N1fZQoaAZHQG9p/EOy3TdoB00XAWgIR0CUs0Pva11GdX2UKGgGR0BsVzOs1baAaAdNJwFoCEdAlLRfuogmq3V9lChoBkdAbnHQ4S6DoWgHTRYBaAhHQJS0swaisXB1fZQoaAZHQHLlKkuYhMdoB00OAWgIR0CUtQ+GXXyzdX2UKGgGR0Bw/jqyGBWgaAdNOgFoCEdAlLYerU9ZBHV9lChoBkdAbHfGe+VTrGgHTSQBaAhHQJS3Npudf9h1fZQoaAZHQHEpiCFsYVJoB004AWgIR0CUt4BVMmF8dX2UKGgGR0ByHmNDMNc4aAdNFwFoCEdAlLizSb6P83V9lChoBkdAclkc1fmcOWgHTTgBaAhHQJS5HlNlAeJ1fZQoaAZHQHDRVwLmZE5oB00sAWgIR0CUubgdOqNqdX2UKGgGR0Bv1HTVlPJraAdNHgFoCEdAlLpT9fkWAXV9lChoBkdAb7E57w8W9GgHTS0BaAhHQJS6h1dPci51fZQoaAZHQG7GqfOD8LtoB000AWgIR0CUuuOHFglXdX2UKGgGR0BvRAOFxn3+aAdNUwFoCEdAlLs9rftQbnV9lChoBkdAcILq2jO9nWgHTToBaAhHQJS7l70Fr2x1fZQoaAZHQHElidWhh6VoB00xAWgIR0CUu6FyaNModX2UKGgGR0BwClTJhfBvaAdNHAFoCEdAlLvDQNTcZnV9lChoBkdAb1QI7/4qPWgHTSQBaAhHQJS9YvXbudB1fZQoaAZHQG58SK3uuzRoB0v7aAhHQJS9sUHpr1x1fZQoaAZHQHBx53kgfU5oB01IAWgIR0CUvg7yhBZ7dX2UKGgGR0BwsNZ9uxbCaAdNCgFoCEdAlL8n1anrIHV9lChoBkdAbFLJW/8EV2gHTUABaAhHQJTBQnc+JP91fZQoaAZHQG8vFERaouRoB01GAWgIR0CUwvReC04SdX2UKGgGR0ByEAqnWJ7+aAdNLAFoCEdAlMMVx82Ji3V9lChoBkdAcOHraM72c2gHTSEBaAhHQJTDoeMhouh1fZQoaAZHQG7EI0qH449oB01gAWgIR0CUxHH4GlhxdX2UKGgGR0Bv0SV6eGwiaAdNPgFoCEdAlMR98uzyBnV9lChoBkdAcDsoxpL26GgHTRUBaAhHQJTEwug6EJ11fZQoaAZHQG6LmRmseXBoB00hAWgIR0CUxPtYjjaPdX2UKGgGR0BuhTI91U2laAdNNgFoCEdAlMUvUvwmV3V9lChoBkdAcJMKh+OOsGgHTTYBaAhHQJTFrZYgaFV1fZQoaAZHQGzZR6OYIB1oB01WAWgIR0CUxgGetjkNdX2UKGgGR0BxwoIcBEKFaAdNMgJoCEdAlMc0GFBY3nV9lChoBkdAcK1KXv6TGGgHTQ8BaAhHQJTHrI91U2l1fZQoaAZHQHGwlTBInShoB00oAWgIR0CUx7jENvwWdX2UKGgGR0A9i2wmmce9aAdL72gIR0CUx+bo8p1BdX2UKGgGR0Bvo1c6eXiSaAdNPAFoCEdAlMisqvvBrXV9lChoBkdAcBZxM36yjmgHTTkBaAhHQJTfJYjjaPF1fZQoaAZHQHEiXlGPPs1oB00fAWgIR0CU3+TCLuQZdX2UKGgGR0BxbNph4MWoaAdNGwFoCEdAlOA/TPSlWXV9lChoBkdAa90pvP1L8WgHTSQBaAhHQJTh5RZU1ht1fZQoaAZHQHCVN+so2GZoB00nAWgIR0CU4pcfNiYtdX2UKGgGR0BtgE30f5k9aAdNLQFoCEdAlOKWSQo1DXV9lChoBkdAcJe1U2kzoGgHTT8BaAhHQJTiuaCtihF1fZQoaAZHQGrHPikwevJoB01BAWgIR0CU4sH/LkjpdX2UKGgGR0Bwujjebd8BaAdNHAFoCEdAlOL3c580DXV9lChoBkdAcMyHpKSPl2gHTSwBaAhHQJTjOM+/xlR1fZQoaAZHQHDMOz+m3vxoB00UAWgIR0CU5AyxA0KrdX2UKGgGR0BtjHGhmGucaAdNMgFoCEdAlOSkVSGahHV9lChoBkdAb/0msvIwNGgHTQ8BaAhHQJTk3C+De0p1fZQoaAZHQHMOELpiZv1oB002AWgIR0CU5RTHbRF7dX2UKGgGR0BwmToNd7fIaAdNWQFoCEdAlOYkx7AtWnV9lChoBkdAcEfGgi/wiWgHTQACaAhHQJTnFj3Ehq11fZQoaAZHQHGuHgUDdQBoB00pAWgIR0CU6K8gIQe4dX2UKGgGR0BxSG51/2CeaAdNIwFoCEdAlOl22CuloHV9lChoBkdAcBDDLr5ZbWgHTS4BaAhHQJTphsDW9UV1fZQoaAZHQG+LosiB5HFoB00DAWgIR0CU6jrQPZqVdX2UKGgGR0BymPGuLaVVaAdNHQFoCEdAlOsSlBQem3V9lChoBkdAcfN3n6l+E2gHTT0BaAhHQJTrn6VMVUN1fZQoaAZHQHCttTLns9loB00lAWgIR0CU6/Xg9/z8dX2UKGgGR0BwLHPjXFtLaAdNLwFoCEdAlOwF72L5ynV9lChoBkdAbyYa/h2nsWgHTQ8BaAhHQJTtBFZxJd11fZQoaAZHQG5tVD8cdYJoB00xAWgIR0CU7T7wazeGdX2UKGgGR0BxvLzxwyZbaAdNKgFoCEdAlO2cafjCHnV9lChoBkdAcR6Dl5nlGWgHTTMBaAhHQJTuWCWeHzp1fZQoaAZHQHKgSgCfYjBoB02YAWgIR0CU7v/J/5LzdX2UKGgGR0Bvs/NPgvUSaAdNLwFoCEdAlO9aY3Ns33V9lChoBkdAcQFtpEhJRWgHTT4BaAhHQJTw1MewLVp1fZQoaAZHQHBEZxNqQBBoB00IAWgIR0CU8OGYKIBSdX2UKGgGR0Bu6lhG6PKdaAdNHAFoCEdAlPMV9nbqQnV9lChoBkdAbmNyMDOkcmgHTTMBaAhHQJTzH2kBS1p1fZQoaAZHQHDIAwPAfuFoB00FAWgIR0CU8yz3AVO9dX2UKGgGR0ByeEINVinYaAdNVgFoCEdAlPQ5ntfG/HV9lChoBkdAbekZpi7TUmgHTRYBaAhHQJT0oygwoLJ1fZQoaAZHQHDEPW6K+BZoB00gAWgIR0CU9KKji4rjdX2UKGgGR0BvaSRKYiPiaAdNLQFoCEdAlPV7UkOZs3V9lChoBkdAbsamce8wpWgHTSUBaAhHQJT2ONfgJkZ1fZQoaAZHQG2AmpMpPRBoB00jAWgIR0CU9mXMhX8wdX2UKGgGR0Bv8BrgwXZXaAdNGQFoCEdAlPZ1uaWonHV9lChoBkdAcAEjABT4tmgHTTwBaAhHQJT4Sp1ie/Z1fZQoaAZHQHG4BD1GsmxoB00oAWgIR0CU+QsNlRP5dX2UKGgGR0Bw9ih7E5yVaAdNOQFoCEdAlPk6LjxTbXV9lChoBkdAb+yo9cKPXGgHTRwBaAhHQJT6uuoxYaJ1fZQoaAZHQHAxnFHavidoB00fAWgIR0CU+tIppeu3dX2UKGgGR0Bxbps0pEx7aAdL/mgIR0CU/FwAlv61dX2UKGgGR0Bt35XyRSxaaAdNDwFoCEdAlP0T3Zf2K3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a904cf91f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a904cf91fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a904cf92050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a904cf920e0>", "_build": "<function ActorCriticPolicy._build at 0x7a904cf92170>", "forward": "<function ActorCriticPolicy.forward at 0x7a904cf92200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a904cf92290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a904cf92320>", "_predict": "<function ActorCriticPolicy._predict at 0x7a904cf923b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a904cf92440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a904cf924d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a904cf92560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a904cecd540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736591320843277653, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMfhz32wGm6hnyIu6AupjdyVQ27/gcFtwAAgD8AAAAAphjQvSSEuT/rFiG/F2SYvR5gYb0foIC+AAAAAAAAAADNi1k+o/VJP5qKDT6UYfy+9YakPrtS670AAAAAAAAAAA2ZCr4TUWM/tXqOvpVDH79+qYi+DnHFvQAAAAAAAAAAs79JvekbFLzjJsw92SndvfGl77yrrxG/AACAPwAAgD+AVwa9jZmJPgiSqrzKJs++nsHavGbxY7wAAAAAAAAAAJq1RbwKLhs/QKwoPiYw5r5JEvg79twqPgAAAAAAAAAAevJAvgo4DLu6Vte6sF9ctwCmVDyCJP05AACAPwAAAAAaI2I9Ty03PU2FNL7bbam+X/iQveJXm7wAAAAAAAAAAJrp8ry+AaM//J0Wvv0fD7/dJoC9Zj5evQAAAAAAAAAANpiHvvx89T6moI0+dnf/vgcphL76Lm8+AAAAAAAAAACaCIQ92OThPghrF72Cu9q+tBoaPBuzqrwAAAAAAAAAAD16Tr6NZFw+y74JP7H67L72kEO++RPKPgAAAAAAAAAAwCd8vhQTST9uAXA9T38Xv1PDvL68QAY+AAAAAAAAAAAThjw+gMB0P19qkD5ngBW/m0aQPmjU0boAAAAAAAAAAM0eLD0xz4Q/DkKwPWkYFr/ZQFo9Akb+PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEacdtEXtWMAWyUS+KMAXSUR0CWj/xs2vSudX2UKGgGR0BvbaK1og3caAdLzGgIR0CWkBz3h4t6dX2UKGgGR0BybcI2OyVwaAdLsGgIR0CWkCC7btZ3dX2UKGgGR0BzPIFpwjt5aAdL4mgIR0CWkVcVQAMldX2UKGgGR0Buh0kKNQ0oaAdLumgIR0CWkiUzKs+3dX2UKGgGR0BwKoXcgyM2aAdL3WgIR0CWkkdu5z5odX2UKGgGR0By1j3L3bmEaAdLz2gIR0CWkrOk+HJtdX2UKGgGR0BkbzOzIFNdaAdN6ANoCEdAlpLURSP2f3V9lChoBkdAcxvjKgZjx2gHS71oCEdAlpLgDFId2nV9lChoBkdAcUlV+7UXpGgHS81oCEdAlpLxyCFsYXV9lChoBkdAcg7cfvF3p2gHS8BoCEdAlpN5LM9r43V9lChoBkdAcrpP1tfoimgHS9ZoCEdAlpOEMgEEDHV9lChoBkdAcH1cUM5OrWgHS8ZoCEdAlpOIb83uNXV9lChoBkdAc0m+t8uzyGgHS+toCEdAlpO2nfl6q3V9lChoBkdAdCXJtSAH3WgHS+BoCEdAlpSXai9Iw3V9lChoBkdAcw/3gDRtxmgHS9BoCEdAlpT85Ke05XV9lChoBkdAcPqvStvGZWgHS9BoCEdAlpUAuRLbpXV9lChoBkdAcZ7yYG+sYGgHS/BoCEdAlpWVkMCtBHV9lChoBkdAcLGLgGbCrWgHS9FoCEdAlpYnWBjFynV9lChoBkdAcNaBQemvXGgHS7xoCEdAlpZe1SflIXV9lChoBkdAc1u9a2WpqGgHS7loCEdAlpbl5GBnSXV9lChoBkdAc1NmZmZmZmgHS9VoCEdAlpcNiQT24HV9lChoBkdAcV0GViWmg2gHS8VoCEdAlpcUB0ZFX3V9lChoBkdAcVJtKqXF+GgHS9VoCEdAlperNOdoWnV9lChoBkdAck724/eLvWgHS9hoCEdAlpeq90zTF3V9lChoBkdAciwiEg4ffWgHS8toCEdAlpgKXF98Z3V9lChoBkdAcVdDBdld1WgHS8poCEdAlpgUR8MNMHV9lChoBkdAcbuP+4smOWgHS8RoCEdAlpgfFBIFvHV9lChoBkdAcgoVyFPBSGgHS+JoCEdAlpiShrWRR3V9lChoBkdAcbGdeY2KmGgHS8toCEdAlssw6QvHtHV9lChoBkdAbwckCV8kU2gHS+9oCEdAlsuj+rELpnV9lChoBkdAcTuPSlWOqGgHS9loCEdAlswwX/HYH3V9lChoBkdAcrf8zyjHn2gHS/xoCEdAlsxjkhib2HV9lChoBkdAc1YAckt292gHS9NoCEdAlsyiro4dZXV9lChoBkdAcWU+0PYnOWgHS7ZoCEdAlsy9aY/mknV9lChoBkdAcpYvW6K+BmgHS+1oCEdAls12p2ll9XV9lChoBkdAby78qFyq/GgHS9FoCEdAls2EXUH6dnV9lChoBkdAc9cBBiTdL2gHS8doCEdAls3lPrOZ9nV9lChoBkdAc3ioGY8dP2gHS9JoCEdAls4uYplSTHV9lChoBkdAcUY+WnjyWmgHS79oCEdAls4q0D2alXV9lChoBkdAcKsLZBcAzmgHS99oCEdAls7Zy6tknXV9lChoBkdAcVbWp6yB1GgHS9BoCEdAls8LX+VC5XV9lChoBkdAcq6Z6Uqx1WgHTRcBaAhHQJbPLGsFMZh1fZQoaAZHQHDuiOzY289oB0vxaAhHQJbPOxX4j8l1fZQoaAZHQHKPzwpe/pNoB0vTaAhHQJbQHsXzlLh1fZQoaAZHQHK34caOxSpoB0vYaAhHQJbQpkYoAn51fZQoaAZHQHIWHHzYmLNoB0vMaAhHQJbRGGh24d91fZQoaAZHQHAW4CEHt4RoB0u9aAhHQJbRG3d9Dx91fZQoaAZHQHGzyWE9MbpoB0vYaAhHQJbRLZBcAzZ1fZQoaAZHQHGHqwdKdx1oB0vraAhHQJbSEYLsrup1fZQoaAZHQHLK0KArhBJoB0vUaAhHQJbSZT987ZF1fZQoaAZHQHNeiHmA9V5oB0vUaAhHQJbSczzmOlx1fZQoaAZHQHFbUlRgqmVoB0vXaAhHQJbS5QEZBLR1fZQoaAZHQHKUN03fhuRoB0vYaAhHQJbTLP8hs691fZQoaAZHQHDeIIjW07doB0vKaAhHQJbTwImgJ1J1fZQoaAZHQHMV+rQw9JVoB0v2aAhHQJbT414xDb91fZQoaAZHQHRrxUNrj5toB0voaAhHQJbURRfnfVJ1fZQoaAZHQHGGPnfVI7NoB0veaAhHQJbUbp7kXDZ1fZQoaAZHQHHFM9W6shhoB0vsaAhHQJbUs11nuiN1fZQoaAZHQHOOVoQFs55oB0voaAhHQJbVn9DQZ4x1fZQoaAZHQG/Vis4ku6FoB0vBaAhHQJbVsUbkwN91fZQoaAZHQGcIRkupS75oB03oA2gIR0CW1d82aUiZdX2UKGgGR0By37u3MINWaAdL02gIR0CW1jDIRywOdX2UKGgGR0BwIKl54W1uaAdL9WgIR0CW1nWepXIVdX2UKGgGR0BxvQ8jiXIEaAdLzWgIR0CW1uCZnctYdX2UKGgGR0B0OXuWrwOOaAdL+GgIR0CW1unX/YJ3dX2UKGgGR0BxH992HLzPaAdL32gIR0CW15SvkiljdX2UKGgGR0BxAgZeiSJTaAdL1GgIR0CW18N4JNTMdX2UKGgGR0Bx1QyTINmUaAdLrmgIR0CW19SsKb8WdX2UKGgGR0B0JePkq+ajaAdLvmgIR0CW2A9uxbB5dX2UKGgGR0ByRuAWi1zAaAdL4GgIR0CW2EYwqRU4dX2UKGgGR0Bw2SK/EfknaAdLxGgIR0CW2MXmvGIbdX2UKGgGR0Bw5mXjU/fPaAdLumgIR0CW2M5AyEcsdX2UKGgGR0Byy4v/R3NcaAdL5WgIR0CW2Vn3ta6jdX2UKGgGR0BxbEu+RHPNaAdL22gIR0CW2pGVAzHkdX2UKGgGR0ByXSUSqU/waAdL3WgIR0CW2pCkGiYcdX2UKGgGR0BxkroX9BKMaAdL32gIR0CW2thEBsAOdX2UKGgGR0Bya6tjkMkQaAdL3GgIR0CW2xy6+WWydX2UKGgGR0Bx887KaG5+aAdLxWgIR0CW21VjZteldX2UKGgGR0BzFlLytmthaAdL42gIR0CW25DCP6sRdX2UKGgGR0BxpyOBDohZaAdL5WgIR0CW3BzE74i5dX2UKGgGR0BweRqEeyRkaAdL0WgIR0CW3OCfpUxVdX2UKGgGR0BxnHqQiiZfaAdLv2gIR0CW3PV1wHZ9dX2UKGgGR0BzP2QcPvroaAdL1mgIR0CW3WRoysS1dX2UKGgGR0Bzt2eXiR4haAdLy2gIR0CW3jyGSIP9dX2UKGgGR0Bx5jxx1gYxaAdL0mgIR0CW3m07r9l3dX2UKGgGR0BzqqZZ0SyuaAdLtWgIR0CW4AQnQY1pdX2UKGgGR0BzhYV32VVxaAdL/WgIR0CW4NXizcASdX2UKGgGR0ByYBIUahpQaAdL6mgIR0CW4gUBnzxxdX2UKGgGR0BzMDLq2SdOaAdLzmgIR0CW4jHT7VJ+dX2UKGgGR0BysICOmzjWaAdNXgJoCEdAluKhKg7HQ3V9lChoBkdAcQ4L6UJOWWgHS+hoCEdAluLfPcBU73V9lChoBkdAc2UT6SDAamgHS9xoCEdAluMbdJrckHV9lChoBkdAcS+0Kqn3tmgHS8toCEdAluNR6By0bHV9lChoBkdAb2FhXr+o+GgHS8RoCEdAluQF8b70nXV9lChoBkdAcYQ0GeMAFWgHTR0BaAhHQJbkXmvGIbh1fZQoaAZHQHMaztLL6k9oB0vQaAhHQJbkX1kDp1R1fZQoaAZHQG1bkkKNQ0poB0vHaAhHQJbkktL+PzZ1fZQoaAZHQHKcfT1CgK5oB0u/aAhHQJblFzo2XLN1fZQoaAZHQHCmPWH1vl5oB0u/aAhHQJblP3wkPc11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:890394cedfab1d70a650eef3cc92ce5a42d357ab2772022276fde3f304e71fd0
3
- size 148020
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6c898fe2f7de4816f7a9ef3f6241baa9398ac5914577636d6d09df515b2767d
3
+ size 147897
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7911a7640c10>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7911a7640ca0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7911a7640d30>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7911a7640dc0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7911a7640e50>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7911a7640ee0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7911a7640f70>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7911a7641000>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7911a7641090>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7911a7641120>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7911a76411b0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7911a7641240>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7911a75ab700>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1732712718477067305,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDu3r0CZTc+Zy6ZPrQCaL6twtA9R69EPQAAAAAAAAAATQd5vVwfDrpR2Y2zbInTrqQXErvWQMgzAACAPwAAgD8AwjW9sq4ZPlatQD0HwmK+tBaBO16oTj0AAAAAAAAAAIC3cL0fBc638KEWuuvdpLTLDm26zhwzOQAAAAAAAIA/yp/kvldhJz8YmRo+QK6Kvkn+J769poi8AAAAAAAAAACN2dy9hxaRP+A8jL6jPK6+gGn8vWukaL0AAAAAAAAAAIDkGb3DEVY7ZMrIPSbYir7azRo9mpnBugAAAAAAAAAAzdIRvU/DULywdh68NckUPXk/vD3LUey9AACAPwAAgD/N3D+7GbWDPz0iBLz0hLK+YleZPKPecLsAAAAAAAAAAFPfDz4kr/0+J/4+vs/onr7XpIw94JmavQAAAAAAAAAAM3zKvEiTrrpaXYe5XqF7tAUZ9jmGAJs4AACAPwAAgD9TZxq+iXE1P/DOVLsRcJa+aVQjvZ60Bj0AAAAAAAAAAAVli77iHx4//xJFPjQthL4/B4i9Kj4uPQAAAAAAAAAAw0OzPvBgTD/e+O+8IV3pvmYVSD5q/Na9AAAAAAAAAAD6Qio+FAXYvNa4ML5Txwe+IM09vnZZ074AAIA/AACAP40BkL1IC6a6ic1HOgTsNTWauG26poJluQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,13 +45,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6Fyc0+C9SMAWyUTSgBjAF0lEdAlKxewPiDNHV9lChoBkdAcADg4wRGt2gHTUkBaAhHQJSs4AwPAfx1fZQoaAZHQG8xC6pYLb5oB009AWgIR0CUrREPDpC8dX2UKGgGR0BvF0DZDiOvaAdNIwFoCEdAlK5nqNZNf3V9lChoBkdAcF3gDRtxdmgHTUQBaAhHQJSuv9ycTal1fZQoaAZHQG9M0/OdGy5oB01ZAWgIR0CUsAucc2itdX2UKGgGR0BtTMSh8IAwaAdNHgFoCEdAlLC/cvduYXV9lChoBkdAcSRROk+HJ2gHTSUBaAhHQJSxBHhCMP11fZQoaAZHQHCyPqTr3TNoB00lAWgIR0CUsUSF49owdX2UKGgGR0BvQMCHRCyAaAdNOAFoCEdAlLG3dfsu4HV9lChoBkdAcLODw6QvH2gHTSQBaAhHQJSx3MlkYoB1fZQoaAZHQG4EraM72ctoB00oAWgIR0CUsf4nWrfcdX2UKGgGR0BwJTHYHxBmaAdNLgFoCEdAlLJVVcUuc3V9lChoBkdAcSDR7JGOMmgHTSkBaAhHQJSylZOi35N1fZQoaAZHQG9p/EOy3TdoB00XAWgIR0CUs0Pva11GdX2UKGgGR0BsVzOs1baAaAdNJwFoCEdAlLRfuogmq3V9lChoBkdAbnHQ4S6DoWgHTRYBaAhHQJS0swaisXB1fZQoaAZHQHLlKkuYhMdoB00OAWgIR0CUtQ+GXXyzdX2UKGgGR0Bw/jqyGBWgaAdNOgFoCEdAlLYerU9ZBHV9lChoBkdAbHfGe+VTrGgHTSQBaAhHQJS3Npudf9h1fZQoaAZHQHEpiCFsYVJoB004AWgIR0CUt4BVMmF8dX2UKGgGR0ByHmNDMNc4aAdNFwFoCEdAlLizSb6P83V9lChoBkdAclkc1fmcOWgHTTgBaAhHQJS5HlNlAeJ1fZQoaAZHQHDRVwLmZE5oB00sAWgIR0CUubgdOqNqdX2UKGgGR0Bv1HTVlPJraAdNHgFoCEdAlLpT9fkWAXV9lChoBkdAb7E57w8W9GgHTS0BaAhHQJS6h1dPci51fZQoaAZHQG7GqfOD8LtoB000AWgIR0CUuuOHFglXdX2UKGgGR0BvRAOFxn3+aAdNUwFoCEdAlLs9rftQbnV9lChoBkdAcILq2jO9nWgHTToBaAhHQJS7l70Fr2x1fZQoaAZHQHElidWhh6VoB00xAWgIR0CUu6FyaNModX2UKGgGR0BwClTJhfBvaAdNHAFoCEdAlLvDQNTcZnV9lChoBkdAb1QI7/4qPWgHTSQBaAhHQJS9YvXbudB1fZQoaAZHQG58SK3uuzRoB0v7aAhHQJS9sUHpr1x1fZQoaAZHQHBx53kgfU5oB01IAWgIR0CUvg7yhBZ7dX2UKGgGR0BwsNZ9uxbCaAdNCgFoCEdAlL8n1anrIHV9lChoBkdAbFLJW/8EV2gHTUABaAhHQJTBQnc+JP91fZQoaAZHQG8vFERaouRoB01GAWgIR0CUwvReC04SdX2UKGgGR0ByEAqnWJ7+aAdNLAFoCEdAlMMVx82Ji3V9lChoBkdAcOHraM72c2gHTSEBaAhHQJTDoeMhouh1fZQoaAZHQG7EI0qH449oB01gAWgIR0CUxHH4GlhxdX2UKGgGR0Bv0SV6eGwiaAdNPgFoCEdAlMR98uzyBnV9lChoBkdAcDsoxpL26GgHTRUBaAhHQJTEwug6EJ11fZQoaAZHQG6LmRmseXBoB00hAWgIR0CUxPtYjjaPdX2UKGgGR0BuhTI91U2laAdNNgFoCEdAlMUvUvwmV3V9lChoBkdAcJMKh+OOsGgHTTYBaAhHQJTFrZYgaFV1fZQoaAZHQGzZR6OYIB1oB01WAWgIR0CUxgGetjkNdX2UKGgGR0BxwoIcBEKFaAdNMgJoCEdAlMc0GFBY3nV9lChoBkdAcK1KXv6TGGgHTQ8BaAhHQJTHrI91U2l1fZQoaAZHQHGwlTBInShoB00oAWgIR0CUx7jENvwWdX2UKGgGR0A9i2wmmce9aAdL72gIR0CUx+bo8p1BdX2UKGgGR0Bvo1c6eXiSaAdNPAFoCEdAlMisqvvBrXV9lChoBkdAcBZxM36yjmgHTTkBaAhHQJTfJYjjaPF1fZQoaAZHQHEiXlGPPs1oB00fAWgIR0CU3+TCLuQZdX2UKGgGR0BxbNph4MWoaAdNGwFoCEdAlOA/TPSlWXV9lChoBkdAa90pvP1L8WgHTSQBaAhHQJTh5RZU1ht1fZQoaAZHQHCVN+so2GZoB00nAWgIR0CU4pcfNiYtdX2UKGgGR0BtgE30f5k9aAdNLQFoCEdAlOKWSQo1DXV9lChoBkdAcJe1U2kzoGgHTT8BaAhHQJTiuaCtihF1fZQoaAZHQGrHPikwevJoB01BAWgIR0CU4sH/LkjpdX2UKGgGR0Bwujjebd8BaAdNHAFoCEdAlOL3c580DXV9lChoBkdAcMyHpKSPl2gHTSwBaAhHQJTjOM+/xlR1fZQoaAZHQHDMOz+m3vxoB00UAWgIR0CU5AyxA0KrdX2UKGgGR0BtjHGhmGucaAdNMgFoCEdAlOSkVSGahHV9lChoBkdAb/0msvIwNGgHTQ8BaAhHQJTk3C+De0p1fZQoaAZHQHMOELpiZv1oB002AWgIR0CU5RTHbRF7dX2UKGgGR0BwmToNd7fIaAdNWQFoCEdAlOYkx7AtWnV9lChoBkdAcEfGgi/wiWgHTQACaAhHQJTnFj3Ehq11fZQoaAZHQHGuHgUDdQBoB00pAWgIR0CU6K8gIQe4dX2UKGgGR0BxSG51/2CeaAdNIwFoCEdAlOl22CuloHV9lChoBkdAcBDDLr5ZbWgHTS4BaAhHQJTphsDW9UV1fZQoaAZHQG+LosiB5HFoB00DAWgIR0CU6jrQPZqVdX2UKGgGR0BymPGuLaVVaAdNHQFoCEdAlOsSlBQem3V9lChoBkdAcfN3n6l+E2gHTT0BaAhHQJTrn6VMVUN1fZQoaAZHQHCttTLns9loB00lAWgIR0CU6/Xg9/z8dX2UKGgGR0BwLHPjXFtLaAdNLwFoCEdAlOwF72L5ynV9lChoBkdAbyYa/h2nsWgHTQ8BaAhHQJTtBFZxJd11fZQoaAZHQG5tVD8cdYJoB00xAWgIR0CU7T7wazeGdX2UKGgGR0BxvLzxwyZbaAdNKgFoCEdAlO2cafjCHnV9lChoBkdAcR6Dl5nlGWgHTTMBaAhHQJTuWCWeHzp1fZQoaAZHQHKgSgCfYjBoB02YAWgIR0CU7v/J/5LzdX2UKGgGR0Bvs/NPgvUSaAdNLwFoCEdAlO9aY3Ns33V9lChoBkdAcQFtpEhJRWgHTT4BaAhHQJTw1MewLVp1fZQoaAZHQHBEZxNqQBBoB00IAWgIR0CU8OGYKIBSdX2UKGgGR0Bu6lhG6PKdaAdNHAFoCEdAlPMV9nbqQnV9lChoBkdAbmNyMDOkcmgHTTMBaAhHQJTzH2kBS1p1fZQoaAZHQHDIAwPAfuFoB00FAWgIR0CU8yz3AVO9dX2UKGgGR0ByeEINVinYaAdNVgFoCEdAlPQ5ntfG/HV9lChoBkdAbekZpi7TUmgHTRYBaAhHQJT0oygwoLJ1fZQoaAZHQHDEPW6K+BZoB00gAWgIR0CU9KKji4rjdX2UKGgGR0BvaSRKYiPiaAdNLQFoCEdAlPV7UkOZs3V9lChoBkdAbsamce8wpWgHTSUBaAhHQJT2ONfgJkZ1fZQoaAZHQG2AmpMpPRBoB00jAWgIR0CU9mXMhX8wdX2UKGgGR0Bv8BrgwXZXaAdNGQFoCEdAlPZ1uaWonHV9lChoBkdAcAEjABT4tmgHTTwBaAhHQJT4Sp1ie/Z1fZQoaAZHQHG4BD1GsmxoB00oAWgIR0CU+QsNlRP5dX2UKGgGR0Bw9ih7E5yVaAdNOQFoCEdAlPk6LjxTbXV9lChoBkdAb+yo9cKPXGgHTRwBaAhHQJT6uuoxYaJ1fZQoaAZHQHAxnFHavidoB00fAWgIR0CU+tIppeu3dX2UKGgGR0Bxbps0pEx7aAdL/mgIR0CU/FwAlv61dX2UKGgGR0Bt35XyRSxaaAdNDwFoCEdAlP0T3Zf2K3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -84,7 +84,7 @@
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
- "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a904cf91f30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a904cf91fc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a904cf92050>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a904cf920e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a904cf92170>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a904cf92200>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a904cf92290>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a904cf92320>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a904cf923b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a904cf92440>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a904cf924d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a904cf92560>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a904cecd540>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1736591320843277653,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMfhz32wGm6hnyIu6AupjdyVQ27/gcFtwAAgD8AAAAAphjQvSSEuT/rFiG/F2SYvR5gYb0foIC+AAAAAAAAAADNi1k+o/VJP5qKDT6UYfy+9YakPrtS670AAAAAAAAAAA2ZCr4TUWM/tXqOvpVDH79+qYi+DnHFvQAAAAAAAAAAs79JvekbFLzjJsw92SndvfGl77yrrxG/AACAPwAAgD+AVwa9jZmJPgiSqrzKJs++nsHavGbxY7wAAAAAAAAAAJq1RbwKLhs/QKwoPiYw5r5JEvg79twqPgAAAAAAAAAAevJAvgo4DLu6Vte6sF9ctwCmVDyCJP05AACAPwAAAAAaI2I9Ty03PU2FNL7bbam+X/iQveJXm7wAAAAAAAAAAJrp8ry+AaM//J0Wvv0fD7/dJoC9Zj5evQAAAAAAAAAANpiHvvx89T6moI0+dnf/vgcphL76Lm8+AAAAAAAAAACaCIQ92OThPghrF72Cu9q+tBoaPBuzqrwAAAAAAAAAAD16Tr6NZFw+y74JP7H67L72kEO++RPKPgAAAAAAAAAAwCd8vhQTST9uAXA9T38Xv1PDvL68QAY+AAAAAAAAAAAThjw+gMB0P19qkD5ngBW/m0aQPmjU0boAAAAAAAAAAM0eLD0xz4Q/DkKwPWkYFr/ZQFo9Akb+PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEacdtEXtWMAWyUS+KMAXSUR0CWj/xs2vSudX2UKGgGR0BvbaK1og3caAdLzGgIR0CWkBz3h4t6dX2UKGgGR0BybcI2OyVwaAdLsGgIR0CWkCC7btZ3dX2UKGgGR0BzPIFpwjt5aAdL4mgIR0CWkVcVQAMldX2UKGgGR0Buh0kKNQ0oaAdLumgIR0CWkiUzKs+3dX2UKGgGR0BwKoXcgyM2aAdL3WgIR0CWkkdu5z5odX2UKGgGR0By1j3L3bmEaAdLz2gIR0CWkrOk+HJtdX2UKGgGR0BkbzOzIFNdaAdN6ANoCEdAlpLURSP2f3V9lChoBkdAcxvjKgZjx2gHS71oCEdAlpLgDFId2nV9lChoBkdAcUlV+7UXpGgHS81oCEdAlpLxyCFsYXV9lChoBkdAcg7cfvF3p2gHS8BoCEdAlpN5LM9r43V9lChoBkdAcrpP1tfoimgHS9ZoCEdAlpOEMgEEDHV9lChoBkdAcH1cUM5OrWgHS8ZoCEdAlpOIb83uNXV9lChoBkdAc0m+t8uzyGgHS+toCEdAlpO2nfl6q3V9lChoBkdAdCXJtSAH3WgHS+BoCEdAlpSXai9Iw3V9lChoBkdAcw/3gDRtxmgHS9BoCEdAlpT85Ke05XV9lChoBkdAcPqvStvGZWgHS9BoCEdAlpUAuRLbpXV9lChoBkdAcZ7yYG+sYGgHS/BoCEdAlpWVkMCtBHV9lChoBkdAcLGLgGbCrWgHS9FoCEdAlpYnWBjFynV9lChoBkdAcNaBQemvXGgHS7xoCEdAlpZe1SflIXV9lChoBkdAc1u9a2WpqGgHS7loCEdAlpbl5GBnSXV9lChoBkdAc1NmZmZmZmgHS9VoCEdAlpcNiQT24HV9lChoBkdAcV0GViWmg2gHS8VoCEdAlpcUB0ZFX3V9lChoBkdAcVJtKqXF+GgHS9VoCEdAlperNOdoWnV9lChoBkdAck724/eLvWgHS9hoCEdAlpeq90zTF3V9lChoBkdAciwiEg4ffWgHS8toCEdAlpgKXF98Z3V9lChoBkdAcVdDBdld1WgHS8poCEdAlpgUR8MNMHV9lChoBkdAcbuP+4smOWgHS8RoCEdAlpgfFBIFvHV9lChoBkdAcgoVyFPBSGgHS+JoCEdAlpiShrWRR3V9lChoBkdAcbGdeY2KmGgHS8toCEdAlssw6QvHtHV9lChoBkdAbwckCV8kU2gHS+9oCEdAlsuj+rELpnV9lChoBkdAcTuPSlWOqGgHS9loCEdAlswwX/HYH3V9lChoBkdAcrf8zyjHn2gHS/xoCEdAlsxjkhib2HV9lChoBkdAc1YAckt292gHS9NoCEdAlsyiro4dZXV9lChoBkdAcWU+0PYnOWgHS7ZoCEdAlsy9aY/mknV9lChoBkdAcpYvW6K+BmgHS+1oCEdAls12p2ll9XV9lChoBkdAby78qFyq/GgHS9FoCEdAls2EXUH6dnV9lChoBkdAc9cBBiTdL2gHS8doCEdAls3lPrOZ9nV9lChoBkdAc3ioGY8dP2gHS9JoCEdAls4uYplSTHV9lChoBkdAcUY+WnjyWmgHS79oCEdAls4q0D2alXV9lChoBkdAcKsLZBcAzmgHS99oCEdAls7Zy6tknXV9lChoBkdAcVbWp6yB1GgHS9BoCEdAls8LX+VC5XV9lChoBkdAcq6Z6Uqx1WgHTRcBaAhHQJbPLGsFMZh1fZQoaAZHQHDuiOzY289oB0vxaAhHQJbPOxX4j8l1fZQoaAZHQHKPzwpe/pNoB0vTaAhHQJbQHsXzlLh1fZQoaAZHQHK34caOxSpoB0vYaAhHQJbQpkYoAn51fZQoaAZHQHIWHHzYmLNoB0vMaAhHQJbRGGh24d91fZQoaAZHQHAW4CEHt4RoB0u9aAhHQJbRG3d9Dx91fZQoaAZHQHGzyWE9MbpoB0vYaAhHQJbRLZBcAzZ1fZQoaAZHQHGHqwdKdx1oB0vraAhHQJbSEYLsrup1fZQoaAZHQHLK0KArhBJoB0vUaAhHQJbSZT987ZF1fZQoaAZHQHNeiHmA9V5oB0vUaAhHQJbSczzmOlx1fZQoaAZHQHFbUlRgqmVoB0vXaAhHQJbS5QEZBLR1fZQoaAZHQHKUN03fhuRoB0vYaAhHQJbTLP8hs691fZQoaAZHQHDeIIjW07doB0vKaAhHQJbTwImgJ1J1fZQoaAZHQHMV+rQw9JVoB0v2aAhHQJbT414xDb91fZQoaAZHQHRrxUNrj5toB0voaAhHQJbURRfnfVJ1fZQoaAZHQHGGPnfVI7NoB0veaAhHQJbUbp7kXDZ1fZQoaAZHQHHFM9W6shhoB0vsaAhHQJbUs11nuiN1fZQoaAZHQHOOVoQFs55oB0voaAhHQJbVn9DQZ4x1fZQoaAZHQG/Vis4ku6FoB0vBaAhHQJbVsUbkwN91fZQoaAZHQGcIRkupS75oB03oA2gIR0CW1d82aUiZdX2UKGgGR0By37u3MINWaAdL02gIR0CW1jDIRywOdX2UKGgGR0BwIKl54W1uaAdL9WgIR0CW1nWepXIVdX2UKGgGR0BxvQ8jiXIEaAdLzWgIR0CW1uCZnctYdX2UKGgGR0B0OXuWrwOOaAdL+GgIR0CW1unX/YJ3dX2UKGgGR0BxH992HLzPaAdL32gIR0CW15SvkiljdX2UKGgGR0BxAgZeiSJTaAdL1GgIR0CW18N4JNTMdX2UKGgGR0Bx1QyTINmUaAdLrmgIR0CW19SsKb8WdX2UKGgGR0B0JePkq+ajaAdLvmgIR0CW2A9uxbB5dX2UKGgGR0ByRuAWi1zAaAdL4GgIR0CW2EYwqRU4dX2UKGgGR0Bw2SK/EfknaAdLxGgIR0CW2MXmvGIbdX2UKGgGR0Bw5mXjU/fPaAdLumgIR0CW2M5AyEcsdX2UKGgGR0Byy4v/R3NcaAdL5WgIR0CW2Vn3ta6jdX2UKGgGR0BxbEu+RHPNaAdL22gIR0CW2pGVAzHkdX2UKGgGR0ByXSUSqU/waAdL3WgIR0CW2pCkGiYcdX2UKGgGR0BxkroX9BKMaAdL32gIR0CW2thEBsAOdX2UKGgGR0Bya6tjkMkQaAdL3GgIR0CW2xy6+WWydX2UKGgGR0Bx887KaG5+aAdLxWgIR0CW21VjZteldX2UKGgGR0BzFlLytmthaAdL42gIR0CW25DCP6sRdX2UKGgGR0BxpyOBDohZaAdL5WgIR0CW3BzE74i5dX2UKGgGR0BweRqEeyRkaAdL0WgIR0CW3OCfpUxVdX2UKGgGR0BxnHqQiiZfaAdLv2gIR0CW3PV1wHZ9dX2UKGgGR0BzP2QcPvroaAdL1mgIR0CW3WRoysS1dX2UKGgGR0Bzt2eXiR4haAdLy2gIR0CW3jyGSIP9dX2UKGgGR0Bx5jxx1gYxaAdL0mgIR0CW3m07r9l3dX2UKGgGR0BzqqZZ0SyuaAdLtWgIR0CW4AQnQY1pdX2UKGgGR0BzhYV32VVxaAdL/WgIR0CW4NXizcASdX2UKGgGR0ByYBIUahpQaAdL6mgIR0CW4gUBnzxxdX2UKGgGR0BzMDLq2SdOaAdLzmgIR0CW4jHT7VJ+dX2UKGgGR0BysICOmzjWaAdNXgJoCEdAluKhKg7HQ3V9lChoBkdAcQ4L6UJOWWgHS+hoCEdAluLfPcBU73V9lChoBkdAc2UT6SDAamgHS9xoCEdAluMbdJrckHV9lChoBkdAcS+0Kqn3tmgHS8toCEdAluNR6By0bHV9lChoBkdAb2FhXr+o+GgHS8RoCEdAluQF8b70nXV9lChoBkdAcYQ0GeMAFWgHTR0BaAhHQJbkXmvGIbh1fZQoaAZHQHMaztLL6k9oB0vQaAhHQJbkX1kDp1R1fZQoaAZHQG1bkkKNQ0poB0vHaAhHQJbkktL+PzZ1fZQoaAZHQHKcfT1CgK5oB0u/aAhHQJblFzo2XLN1fZQoaAZHQHCmPWH1vl5oB0u/aAhHQJblP3wkPc11ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 620,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
  "batch_size": 64,
87
+ "n_epochs": 10,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
  ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6cd3b606d3ff387d095902b0bdd47af4c1b979b482fef5da32bb06f5f79a55ec
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3707800041a7ee83416bc7a8e2dff47b41348e7add8865d154501f536c284b55
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08321a77254438a79f1e7c370206b30dc57d4ee6f82d327b6a61b81ec8701d87
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09912d9db97819190deddbff9fd6f07337068208e16d7e009f977224887ed18e
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 240.5483428228159, "std_reward": 42.84185789225476, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-27T13:33:43.877606"}
 
1
+ {"mean_reward": 271.18377925299876, "std_reward": 15.569483797058083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-11T10:54:35.523353"}