File size: 4,268 Bytes
816e07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a3160
 
 
 
 
816e07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a3160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816e07c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
language:
- jpn
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
- speaker-diarization
- speaker-segmentation
- generated_from_trainer
datasets:
- diarizers-community/callhome
model-index:
- name: speaker-segmentation-fine-tuned-callhome-jpn
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speaker-segmentation-fine-tuned-callhome-jpn

This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the diarizers-community/callhome dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6518
- Der: 0.2003
- False Alarm: 0.0204
- Missed Detection: 0.0126
- Confusion: 0.1673

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | Der    | False Alarm | Missed Detection | Confusion |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
| 0.6084        | 1.0   | 157  | 0.6361          | 0.2140 | 0.0209      | 0.0101           | 0.1829    |
| 0.5157        | 2.0   | 314  | 0.6039          | 0.2079 | 0.0213      | 0.0101           | 0.1765    |
| 0.4718        | 3.0   | 471  | 0.6117          | 0.2094 | 0.0218      | 0.0101           | 0.1775    |
| 0.5069        | 4.0   | 628  | 0.6086          | 0.2129 | 0.0215      | 0.0101           | 0.1813    |
| 0.47          | 5.0   | 785  | 0.5974          | 0.2040 | 0.0215      | 0.0101           | 0.1724    |
| 0.4539        | 6.0   | 942  | 0.6047          | 0.2065 | 0.0219      | 0.0102           | 0.1745    |
| 0.4325        | 7.0   | 1099 | 0.5944          | 0.2009 | 0.0214      | 0.0104           | 0.1691    |
| 0.434         | 8.0   | 1256 | 0.6110          | 0.2059 | 0.0214      | 0.0105           | 0.1740    |
| 0.4199        | 9.0   | 1413 | 0.6045          | 0.2050 | 0.0212      | 0.0106           | 0.1733    |
| 0.4479        | 10.0  | 1570 | 0.6101          | 0.1990 | 0.0212      | 0.0105           | 0.1673    |
| 0.392         | 11.0  | 1727 | 0.6106          | 0.2003 | 0.0208      | 0.0107           | 0.1687    |
| 0.3858        | 12.0  | 1884 | 0.6279          | 0.2009 | 0.0211      | 0.0108           | 0.1689    |
| 0.3686        | 13.0  | 2041 | 0.6279          | 0.1976 | 0.0209      | 0.0114           | 0.1653    |
| 0.3963        | 14.0  | 2198 | 0.6263          | 0.1991 | 0.0211      | 0.0112           | 0.1668    |
| 0.3521        | 15.0  | 2355 | 0.6313          | 0.1970 | 0.0206      | 0.0116           | 0.1649    |
| 0.348         | 16.0  | 2512 | 0.6307          | 0.2001 | 0.0204      | 0.0123           | 0.1673    |
| 0.3668        | 17.0  | 2669 | 0.6425          | 0.2012 | 0.0206      | 0.0124           | 0.1682    |
| 0.3592        | 18.0  | 2826 | 0.6328          | 0.2001 | 0.0205      | 0.0124           | 0.1672    |
| 0.3485        | 19.0  | 2983 | 0.6489          | 0.2006 | 0.0202      | 0.0128           | 0.1675    |
| 0.3529        | 20.0  | 3140 | 0.6501          | 0.2007 | 0.0206      | 0.0123           | 0.1678    |
| 0.35          | 21.0  | 3297 | 0.6473          | 0.2003 | 0.0205      | 0.0124           | 0.1674    |
| 0.3549        | 22.0  | 3454 | 0.6518          | 0.2003 | 0.0205      | 0.0126           | 0.1672    |
| 0.3439        | 23.0  | 3611 | 0.6523          | 0.2002 | 0.0204      | 0.0127           | 0.1671    |
| 0.3495        | 24.0  | 3768 | 0.6527          | 0.2002 | 0.0204      | 0.0126           | 0.1672    |
| 0.34          | 25.0  | 3925 | 0.6518          | 0.2003 | 0.0204      | 0.0126           | 0.1673    |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1