LakoMoor commited on
Commit
69cfc51
·
verified ·
1 Parent(s): a0f4db0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -161
README.md CHANGED
@@ -1,199 +1,134 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ model_name: Vikhr-Qwen-2.5-1.5b-Instruct
4
+ base_model:
5
+ - Qwen/Qwen2.5-1.5B-Instruct
6
+ language:
7
+ - ru
8
+ - en
9
+ license: apache-2.0
10
+ datasets:
11
+ - Vikhrmodels/GrandMaster-PRO-MAX
12
  ---
13
 
14
+ # 💨📟 Vikhr-Qwen-2.5-0.5B-Instruct
15
 
16
+ #### RU
17
 
18
+ Инструктивная модель на основе **Qwen-2.5-1.5B-Instruct**, обученная на русскоязычном датасете **GrandMaster-PRO-MAX**. В **4 раза эффективнее** базовой модели, и идеально подходит для запуска на слабых мобильных устройствах.
19
 
20
+ #### EN
21
 
22
+ Instructive model based on **Qwen-2.5-1.5B-Instruct**, trained on the Russian-language dataset **GrandMaster-PRO-MAX**. It is **4 times more efficient** than the base model, making it perfect for deployment on low-end mobile devices.
23
 
24
+ ## GGUF
25
 
26
+ - [Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct-GGUF](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct-GGUF)
27
 
28
+ ## Особенности:
29
 
30
+ - 📚 Основа / Base: [Qwen-2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)
31
+ - 🇷🇺 Специализация / Specialization: **RU**
32
+ - 💾 Датасет / Dataset: [GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX)
 
 
 
 
33
 
34
+ ## Попробовать / Try now:
35
 
36
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bJpLmplDGkMbfOLO2CH6IO-2uUZEaknf?usp=sharing)
37
 
38
+ ## Описание:
 
 
39
 
40
+ #### RU
41
 
42
+ **Vikhr-Qwen-2.5-1.5B-instruct** это компактная языковая модель, обученная на датасете **GrandMaster-PRO-MAX**, специально доученная для обработки русского языка. Эффективность модели **в 4 раза** превышает базовую модель, а её размер составляет **1ГБ** , что делает её отличным выбором для запуска на слабых мобильных устройствах.
43
 
44
+ #### EN
45
 
46
+ **Vikhr-Qwen-2.5-1.5B-instruct** is a compact language model trained on the **GrandMaster-PRO-MAX** dataset, specifically designed for processing the Russian language. Its efficiency is **4 times** higher than the base model, and its size is **1GB**, making it an excellent choice for deployment on low-end mobile devices.
47
 
48
+ ## Обучение / Train:
49
 
50
+ #### RU
51
 
52
+ Для создания **Vikhr-Qwen-2.5-1.5B-Instruct** использовался метод SFT (Supervised Fine-Tuning). Мы обучили модель на синтетическом датасете **Vikhrmodels/GrandMaster-PRO-MAX** (150k инструкций) с поддержкой CoT (Chain-Of-Thought), используя промпты для GPT-4-turbo.
53
 
54
+ #### EN
55
 
56
+ To create **Vikhr-Qwen-2.5-1.5B-Instruct**, the SFT (Supervised Fine-Tuning) method was used. We trained the model on a synthetic dataset **Vikhrmodels/GrandMaster-PRO-MAX** (150k instructions) with support for CoT (Chain-Of-Thought), utilizing prompts for GPT-4-turbo.
57
 
58
+ ## Пример кода для запуска / Sample code to run:
59
 
60
+ **Рекомендуемая температура для генерации: 0.3** / **Recommended generation temperature: 0.3**.
61
 
62
+ ```python
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
 
65
+ # Загрузка модели и токенизатора
66
+ model_name = "Vikhrmodels/Vikhr-Qwen-2.5-1.5B-Instruct"
67
+ model = AutoModelForCausalLM.from_pretrained(model_name)
68
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
69
 
70
+ # Подготовка входного текста
71
+ input_text = "Напиши очень краткую рецензию о книге Гарри Поттер."
72
 
73
+ messages = [
74
+ {"role": "system", "content": "Вы - Vikhr, помощник с искусственным интеллектом, созданный компанией Vikhr models, чтобы быть полезным, безобидным и честным."},
75
+ {"role": "user", "content": input_text},
76
+ ]
77
 
78
+ # Токенизация и генерация текста
79
+ input_ids = tokenizer.apply_chat_template(messages, truncation=True, add_generation_prompt=True, return_tensors="pt")
80
+ output = model.generate(
81
+ input_ids,
82
+ max_length=1512,
83
+ temperature=0.3,
84
+ num_return_sequences=1,
85
+ no_repeat_ngram_size=2,
86
+ top_k=50,
87
+ top_p=0.95,
88
+ )
89
 
90
+ # Декодирование и вывод результата
91
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
92
+ print(generated_text)
93
+ ```
94
 
95
+ #### Ответ модели / Model response:
96
 
97
+ >Книга "Гарри Поттер" это серия книг, написанных британским писателем Джоан Роулинг. Это одно из самых известных произведений в мире литературы и популярного детского творчества.
98
+ >
99
+ >**Основные черты серии:**
100
+ >
101
+ >1. **Сюжет:** События разворачиваются вокруг мальчика по имени Гарри Поттер, который учится в Школе волшебства и философии в Университете Хогвартс. Он сталкивается с различными препятствиями, включая борьбу со злом, поиск друзей и самопознание.
102
+ >
103
+ >2. **Персонажи:** В книге представлены множество персонажей, каждый из которых имеет свои уникальные черты характера, мотивации и прошлое. Главный герой, Гарри Поттер, является примером доброго и смелого человека, а также необычной личностью.
104
+ >
105
+ >3. **Темы и идеи:** Рассказы книги затрагивают темы любви, дружбы, справедливости, морали, человеческой неповиновенности и важности обучения через приключения.
106
+ >
107
+ >4. **История и развитие персонажей:** Через события и взаимодействие с другими персонажами книга исследует глубокие психологические и философские вопросы.
108
+ >
109
+ >5. **Влияние на культуру:** "Гарри Поттер" оказал огромное влияние на мировую литературу, превратившись в культовый жанр и символ знаний и мудрости.
110
+ >
111
+ >6. **Доступность:** Книги серии доступны для широкой аудитории и пользуются большим спросом, что делает их популярным выбором среди читателей всех возрастов.
112
+ >
113
+ >7. **Развитие жанра:** Несмотря на то что "Гарри Поттер" является частью серии, он продолжает быть любимым и актуальным, так как продолжает удивлять читателей новыми историями и персонажами.
114
+ >
115
+ >Эта серия книг остается одной из самых значительных и влиятельных в истории литературы, оказав влияние на развитие мировой культуры и образование.
116
 
 
117
 
118
+ ### Авторы / Authors
119
 
120
+ - Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), [Vikhr Team](https://t.me/vikhrlabs)
121
+ - Nikolay Kompanets, [LakoMoor](https://t.me/lakomoordev), [Vikhr Team](https://t.me/vikhrlabs)
122
+ - Konstantin Korolev, [Vikhr Team](https://t.me/vikhrlabs)
123
+ - Aleksandr Nikolich, [Vikhr Team](https://t.me/vikhrlabs)
124
 
125
+ ```
126
+ @inproceedings{nikolich2024vikhr,
127
+ title={Vikhr: Constructing a State-of-the-art Bilingual Open-Source Instruction-Following Large Language Model for {Russian}},
128
+ author={Aleksandr Nikolich and Konstantin Korolev and Sergei Bratchikov and Nikolay Kompanets and Igor Kiselev and Artem Shelmanov },
129
+ booktitle = {Proceedings of the 4rd Workshop on Multilingual Representation Learning (MRL) @ EMNLP-2024}
130
+ year={2024},
131
+ publisher = {Association for Computational Linguistics},
132
+ url={https://arxiv.org/pdf/2405.13929}
133
+ }
134
+ ```