File size: 1,744 Bytes
13f8328 4ba4c44 13f8328 a3287ec 13f8328 a3287ec 13f8328 a3287ec 13f8328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 263.26 +/- 19.25
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
```python
# Usage code
import gymnasium as gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
repo_id = "VinayHajare/ppo-LunarLander-v2"
filename = "ppo-LunarLander-v2.zip"
eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint,env=eval_env,print_system_info=True)
#eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])
mean_reward, std_reward = evaluate_policy(model,eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
# Enjoy trained agent
vec_env = model.get_env()
obs = vec_env.reset()
for _ in range(1000):
action, _states = model.predict(obs, deterministic=True)
obs, rewards, dones, info = vec_env.step(action)
vec_env.render("human")
```
|