File size: 1,744 Bytes
13f8328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba4c44
13f8328
 
 
 
 
 
 
 
 
 
 
 
a3287ec
 
13f8328
a3287ec
 
 
 
13f8328
a3287ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13f8328
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: LunarLander-v2
      type: LunarLander-v2
    metrics:
    - type: mean_reward
      value: 263.26 +/- 19.25
      name: mean_reward
      verified: false
---

# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).

## Usage (with Stable-baselines3)


```python
# Usage code
import gymnasium as gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor

repo_id = "VinayHajare/ppo-LunarLander-v2"
filename = "ppo-LunarLander-v2.zip"
eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])

checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint,env=eval_env,print_system_info=True)

#eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])
mean_reward, std_reward = evaluate_policy(model,eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")

# Enjoy trained agent
vec_env = model.get_env()
obs = vec_env.reset()
for _ in range(1000):
    action, _states = model.predict(obs, deterministic=True)
    obs, rewards, dones, info = vec_env.step(action)
    vec_env.render("human")
```