|
import sys |
|
from facewarp.gen_puppet_utils import * |
|
|
|
''' ================================================ |
|
FOA face landmark detection |
|
================================================ ''' |
|
|
|
data_dir = out_dir = 'examples_cartoon' |
|
test_data = sys.argv[1] |
|
CH = test_data[:-4] |
|
use_gt_bb = False |
|
|
|
if(not os.path.exists(os.path.join(data_dir, CH + '.pts'))): |
|
|
|
from thirdparty.face_of_art.menpo_functions import * |
|
from thirdparty.face_of_art.deep_heatmaps_model_fusion_net import DeepHeatmapsModel |
|
|
|
model_path = 'examples/ckpt/deep_heatmaps-60000' |
|
pdm_path = 'thirdparty/face_of_art/pdm_clm_models/pdm_models/' |
|
clm_path = 'thirdparty/face_of_art/pdm_clm_models/clm_models/g_t_all' |
|
|
|
outline_tune = True |
|
map_landmarks_to_original_image = True |
|
|
|
|
|
|
|
bb_dir = os.path.join(data_dir, 'Bounding_Boxes') |
|
bb_dictionary = load_bb_dictionary(bb_dir, mode='TEST', test_data=test_data) |
|
bb_type = 'init' |
|
|
|
img_list = load_menpo_image_list( |
|
img_dir=data_dir, test_data=test_data, train_crop_dir=data_dir, img_dir_ns=data_dir, bb_type=bb_type, |
|
bb_dictionary=bb_dictionary, mode='TEST', return_transform=map_landmarks_to_original_image) |
|
|
|
|
|
heatmap_model = DeepHeatmapsModel( |
|
mode='TEST', img_path=data_dir, test_model_path=model_path, test_data=test_data, menpo_verbose=False) |
|
|
|
print ("\npredicting landmarks for: "+os.path.join(data_dir, test_data)) |
|
print ("\nsaving landmarks to: "+out_dir) |
|
for i, img in enumerate(img_list): |
|
if i == 0: |
|
reuse = None |
|
else: |
|
reuse = True |
|
|
|
preds = heatmap_model.get_landmark_predictions(img_list=[img], pdm_models_dir=pdm_path, clm_model_path=clm_path, |
|
reuse=reuse, map_to_input_size=map_landmarks_to_original_image) |
|
|
|
if map_landmarks_to_original_image: |
|
img = img[0] |
|
|
|
if outline_tune: |
|
pred_lms = preds['ECpTp_out'] |
|
else: |
|
pred_lms = preds['ECpTp_jaw'] |
|
|
|
mio.export_landmark_file(PointCloud(pred_lms[0]), os.path.join(out_dir, img.path.stem + '.pts'), |
|
overwrite=True) |
|
|
|
print ("\nFOA landmark detection DONE!") |
|
|
|
|
|
''' ==================================================================== |
|
opencv vis and refine landmark |
|
|
|
1. visualize the automatic detection result from FOA approach |
|
2. click on landmarks and move them if they are not correct |
|
|
|
Press Q to save landmarks and continue. |
|
==================================================================== ''' |
|
|
|
import cv2 |
|
import numpy as np |
|
import os |
|
|
|
if(os.path.exists(os.path.join(data_dir, CH + '_face_open_mouth.txt'))): |
|
pts0 = np.loadtxt(os.path.join(data_dir, CH + '_face_open_mouth.txt')) |
|
pts0 = pts0[:, 0:2] |
|
else: |
|
f = open(os.path.join(data_dir, test_data[:-4] + '.pts'), 'r') |
|
lines = f.readlines() |
|
pts = [] |
|
for i in range(3, 3+68): |
|
line = lines[i] |
|
line = line[:-1].split(' ') |
|
pts += [float(item) for item in line] |
|
pts0 = np.array(pts).reshape((68, 2)) |
|
|
|
pts = np.copy(pts0) |
|
img0 = cv2.imread(os.path.join(data_dir, test_data)) |
|
img = np.copy(img0) |
|
node = -1 |
|
|
|
|
|
def click_adjust_wireframe(event, x, y, flags, param): |
|
global img, pts, node |
|
|
|
def update_img(node, button_up=False): |
|
global img, pts |
|
|
|
|
|
pts[node, 0], pts[node, 1] = x, y |
|
|
|
img = np.copy(img0) |
|
draw_landmarks(img, pts) |
|
|
|
|
|
if (not button_up): |
|
zoom_in_scale = 2 |
|
zoom_in_box_size = int(150 / zoom_in_scale) |
|
zoom_in_range = int(np.min([zoom_in_box_size, x, y, |
|
(img.shape[0] - y) / 2 / zoom_in_scale, |
|
(img.shape[1] - x) / 2 / zoom_in_scale])) |
|
|
|
img_zoom_in = img[y - zoom_in_range:y + zoom_in_range, |
|
x - zoom_in_range:x + zoom_in_range].copy() |
|
img_zoom_in = cv2.resize(img_zoom_in, (0, 0), fx=zoom_in_scale, |
|
fy=zoom_in_scale) |
|
cv2.drawMarker(img_zoom_in, (zoom_in_range * zoom_in_scale, |
|
zoom_in_range * zoom_in_scale), |
|
(0, 0, 255), |
|
markerType=cv2.MARKER_CROSS, markerSize=30, |
|
thickness=2, line_type=cv2.LINE_AA) |
|
height, width, depth = np.shape(img_zoom_in) |
|
|
|
img[y:y + height, x:x + width] = img_zoom_in |
|
cv2.rectangle(img, (x, y), (x + height, y + width), |
|
(0, 0, 255), thickness=2) |
|
|
|
|
|
if event == cv2.EVENT_LBUTTONDOWN: |
|
|
|
node = closest_node((x, y), pts) |
|
if(node >=0): |
|
update_img(node) |
|
|
|
if event == cv2.EVENT_LBUTTONUP: |
|
node = closest_node((x, y), pts) |
|
if (node >= 0): |
|
update_img(node, button_up=True) |
|
node = -1 |
|
|
|
if event == cv2.EVENT_MOUSEMOVE: |
|
|
|
if (node != -1): |
|
update_img(node) |
|
|
|
draw_landmarks(img, pts) |
|
|
|
cv2.namedWindow("img", cv2.WINDOW_NORMAL) |
|
cv2.setMouseCallback("img", click_adjust_wireframe) |
|
|
|
while(True): |
|
cv2.imshow('img', img) |
|
key = cv2.waitKey(1) |
|
if key == ord("q"): |
|
break |
|
cv2.destroyAllWindows() |
|
|
|
print('vis and refine landmark Done!') |
|
pts = np.concatenate([pts, np.ones((68, 1))], axis=1) |
|
np.savetxt(os.path.join(data_dir, '{}_face_open_mouth.txt'.format(CH)), pts, fmt='%.4f') |
|
|
|
|
|
''' ================================================================= |
|
find closed mouth landmark and normalize |
|
|
|
Input: param are used to change closed mouth strength |
|
param[0]: larger -> outer-upper lip higher |
|
param[1]: larger -> outer-lower lip higher |
|
param[2]: larger -> inner-upper lip higher |
|
param[3]: larger -> inner-lower lip higher |
|
|
|
Output: saved as CH_face_open_mouth_norm.txt |
|
CH_scale_shift.txt |
|
CH_face_close_mouth.txt |
|
|
|
Press Q or close the image window to continue. |
|
================================================================= ''' |
|
|
|
|
|
norm_anno(data_dir, CH, param=[0.7, 0.4, 0.5, 0.5], show=True) |
|
|
|
|
|
''' ================================================================= |
|
delauney tri |
|
|
|
Input: INNER_ONLY indicates whether use the inner lip landmarks only |
|
|
|
Output: saved as CH_delauney_tri.txt |
|
|
|
Press any key to continue. |
|
================================================================= ''' |
|
|
|
|
|
delauney_tri(data_dir, test_data, INNER_ONLY=False) |
|
|
|
|