add finetuning script
Browse files
train.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Fine-Tune SantaCoder on code/text dataset
|
3 |
+
"""
|
4 |
+
# copied from https://github.com/loubnabnl/santacoder-finetuning
|
5 |
+
# removed all parts related to FIM
|
6 |
+
# set --subset to default to None instead of "data" to avoid issues with my own datasets.
|
7 |
+
# added --resume_from_checkpoint to resume training from a checkpoint (untested)
|
8 |
+
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
import os
|
12 |
+
import random
|
13 |
+
import sys
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from datasets import load_dataset
|
18 |
+
from torch.utils.data import IterableDataset
|
19 |
+
from torch.utils.data.dataloader import DataLoader
|
20 |
+
from tqdm import tqdm
|
21 |
+
from transformers import (
|
22 |
+
AutoModelForCausalLM,
|
23 |
+
AutoTokenizer,
|
24 |
+
Trainer,
|
25 |
+
TrainingArguments,
|
26 |
+
logging,
|
27 |
+
set_seed,
|
28 |
+
)
|
29 |
+
|
30 |
+
# import fim
|
31 |
+
|
32 |
+
|
33 |
+
def get_args():
|
34 |
+
parser = argparse.ArgumentParser()
|
35 |
+
parser.add_argument("--resume_from_checkpoint", type=str, default=None) #can pass a checkpoint dir to resume training
|
36 |
+
parser.add_argument("--model_path", type=str, default="bigcode/santacoder")
|
37 |
+
parser.add_argument("--dataset_name", type=str, default="bigcode/the-stack-dedup")
|
38 |
+
parser.add_argument("--subset", type=str, default=None) #None a bodge but not the solution
|
39 |
+
parser.add_argument("--split", type=str, default="train")
|
40 |
+
parser.add_argument("--size_valid_set", type=int, default=4000)
|
41 |
+
parser.add_argument("--streaming", action="store_true")
|
42 |
+
parser.add_argument("--shuffle_buffer", type=int, default=5000)
|
43 |
+
parser.add_argument("--data_column", type=str, default="content")
|
44 |
+
|
45 |
+
parser.add_argument("--seq_length", type=int, default=1024)
|
46 |
+
parser.add_argument("--max_steps", type=int, default=10000)
|
47 |
+
parser.add_argument("--batch_size", type=int, default=2)
|
48 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=8)
|
49 |
+
parser.add_argument("--eos_token_id", type=int, default=49152)
|
50 |
+
|
51 |
+
parser.add_argument("--learning_rate", type=float, default=5e-5)
|
52 |
+
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
|
53 |
+
parser.add_argument("--num_warmup_steps", type=int, default=100)
|
54 |
+
parser.add_argument("--weight_decay", type=float, default=0.05)
|
55 |
+
|
56 |
+
parser.add_argument("--local_rank", type=int, default=0)
|
57 |
+
parser.add_argument("--no_fp16", action="store_false")
|
58 |
+
parser.add_argument("--bf16", action="store_true")
|
59 |
+
parser.add_argument("--no_gradient_checkpointing", action="store_false")
|
60 |
+
parser.add_argument("--seed", type=int, default=0)
|
61 |
+
parser.add_argument("--num_workers", type=int, default=None)
|
62 |
+
parser.add_argument("--output_dir", type=str, default="./checkpoints")
|
63 |
+
parser.add_argument("--log_freq", default=1, type=int)
|
64 |
+
parser.add_argument("--eval_freq", default=1000, type=int)
|
65 |
+
parser.add_argument("--save_freq", default=1000, type=int)
|
66 |
+
|
67 |
+
# parser.add_argument("--fim_rate", type=float, default=0)
|
68 |
+
# parser.add_argument("--fim_spm_rate", type=float, default=0)
|
69 |
+
return parser.parse_args()
|
70 |
+
|
71 |
+
|
72 |
+
def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
|
73 |
+
"""
|
74 |
+
Estimate the average number of characters per token in the dataset.
|
75 |
+
"""
|
76 |
+
total_characters, total_tokens = 0, 0
|
77 |
+
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
|
78 |
+
total_characters += len(example[data_column])
|
79 |
+
total_tokens += len(tokenizer(example[data_column]).tokens())
|
80 |
+
|
81 |
+
return total_characters / total_tokens
|
82 |
+
|
83 |
+
|
84 |
+
class ConstantLengthDataset(IterableDataset):
|
85 |
+
"""
|
86 |
+
Iterable dataset that returns constant length chunks of tokens from stream of text files.
|
87 |
+
Args:
|
88 |
+
tokenizer (Tokenizer): The processor used for proccessing the data.
|
89 |
+
dataset (dataset.Dataset): Dataset with text files.
|
90 |
+
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
|
91 |
+
seq_length (int): Length of token sequences to return.
|
92 |
+
num_of_sequences (int): Number of token sequences to keep in buffer.
|
93 |
+
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
|
94 |
+
# fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
|
95 |
+
# fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.
|
96 |
+
seed (int): Seed for random number generator.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
tokenizer,
|
102 |
+
dataset,
|
103 |
+
infinite=False,
|
104 |
+
seq_length=1024,
|
105 |
+
num_of_sequences=1024,
|
106 |
+
chars_per_token=3.6,
|
107 |
+
content_field="content",
|
108 |
+
# fim_rate=0.5,
|
109 |
+
# fim_spm_rate=0.5,
|
110 |
+
seed=0,
|
111 |
+
):
|
112 |
+
self.tokenizer = tokenizer
|
113 |
+
self.concat_token_id = (
|
114 |
+
tokenizer.eos_token_id if tokenizer.eos_token_id else args.eos_token_id
|
115 |
+
)
|
116 |
+
self.dataset = dataset
|
117 |
+
self.seq_length = seq_length
|
118 |
+
self.infinite = infinite
|
119 |
+
self.current_size = 0
|
120 |
+
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
|
121 |
+
self.content_field = content_field
|
122 |
+
# self.fim_rate = fim_rate
|
123 |
+
# self.fim_spm_rate = fim_spm_rate
|
124 |
+
self.seed = seed
|
125 |
+
|
126 |
+
# (
|
127 |
+
# self.suffix_tok_id,
|
128 |
+
# self.prefix_tok_id,
|
129 |
+
# self.middle_tok_id,
|
130 |
+
# self.pad_tok_id,
|
131 |
+
# ) = fim.get_fim_token_ids(self.tokenizer)
|
132 |
+
# if not self.suffix_tok_id and self.fim_rate > 0:
|
133 |
+
# print("FIM is not supported by tokenizer, disabling FIM")
|
134 |
+
# self.fim_rate = 0
|
135 |
+
|
136 |
+
def __iter__(self):
|
137 |
+
iterator = iter(self.dataset)
|
138 |
+
more_examples = True
|
139 |
+
while more_examples:
|
140 |
+
buffer, buffer_len = [], 0
|
141 |
+
while True:
|
142 |
+
if buffer_len >= self.max_buffer_size:
|
143 |
+
break
|
144 |
+
try:
|
145 |
+
buffer.append(next(iterator)[self.content_field])
|
146 |
+
buffer_len += len(buffer[-1])
|
147 |
+
except StopIteration:
|
148 |
+
if self.infinite:
|
149 |
+
iterator = iter(self.dataset)
|
150 |
+
else:
|
151 |
+
more_examples = False
|
152 |
+
break
|
153 |
+
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
|
154 |
+
all_token_ids = []
|
155 |
+
|
156 |
+
np_rng = np.random.RandomState(seed=self.seed)
|
157 |
+
for tokenized_input in tokenized_inputs:
|
158 |
+
# optionally do FIM permutations
|
159 |
+
# if self.fim_rate > 0:
|
160 |
+
# tokenized_input, np_rng = fim.permute(
|
161 |
+
# tokenized_input,
|
162 |
+
# np_rng,
|
163 |
+
# self.suffix_tok_id,
|
164 |
+
# self.prefix_tok_id,
|
165 |
+
# self.middle_tok_id,
|
166 |
+
# self.pad_tok_id,
|
167 |
+
# fim_rate=self.fim_rate,
|
168 |
+
# fim_spm_rate=self.fim_spm_rate,
|
169 |
+
# truncate_or_pad=False,
|
170 |
+
# )
|
171 |
+
|
172 |
+
all_token_ids.extend(tokenized_input + [self.concat_token_id])
|
173 |
+
examples = []
|
174 |
+
for i in range(0, len(all_token_ids), self.seq_length):
|
175 |
+
input_ids = all_token_ids[i : i + self.seq_length]
|
176 |
+
if len(input_ids) == self.seq_length:
|
177 |
+
examples.append(input_ids)
|
178 |
+
random.shuffle(examples)
|
179 |
+
for example in examples:
|
180 |
+
self.current_size += 1
|
181 |
+
yield {
|
182 |
+
"input_ids": torch.LongTensor(example),
|
183 |
+
"labels": torch.LongTensor(example),
|
184 |
+
}
|
185 |
+
|
186 |
+
def create_datasets(tokenizer, args):
|
187 |
+
dataset = load_dataset(
|
188 |
+
args.dataset_name,
|
189 |
+
data_dir=args.subset,
|
190 |
+
split=args.split,
|
191 |
+
use_auth_token=True,
|
192 |
+
num_proc=args.num_workers if not args.streaming else None,
|
193 |
+
streaming=args.streaming,
|
194 |
+
)
|
195 |
+
if args.streaming:
|
196 |
+
print("Loading the dataset in streaming mode")
|
197 |
+
valid_data = dataset.take(args.size_valid_set)
|
198 |
+
train_data = dataset.skip(args.size_valid_set)
|
199 |
+
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
|
200 |
+
else:
|
201 |
+
dataset = dataset.train_test_split(test_size=0.005, seed=args.seed)
|
202 |
+
train_data = dataset["train"]
|
203 |
+
valid_data = dataset["test"]
|
204 |
+
print(
|
205 |
+
f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}"
|
206 |
+
)
|
207 |
+
chars_per_token = chars_token_ratio(train_data, tokenizer, args.data_column)
|
208 |
+
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
|
209 |
+
train_dataset = ConstantLengthDataset(
|
210 |
+
tokenizer,
|
211 |
+
train_data,
|
212 |
+
infinite=True,
|
213 |
+
seq_length=args.seq_length,
|
214 |
+
chars_per_token=chars_per_token,
|
215 |
+
content_field=args.data_column,
|
216 |
+
# fim_rate=args.fim_rate,
|
217 |
+
# fim_spm_rate=args.fim_spm_rate,
|
218 |
+
seed=args.seed,
|
219 |
+
)
|
220 |
+
valid_dataset = ConstantLengthDataset(
|
221 |
+
tokenizer,
|
222 |
+
valid_data,
|
223 |
+
infinite=False,
|
224 |
+
seq_length=args.seq_length,
|
225 |
+
chars_per_token=chars_per_token,
|
226 |
+
content_field=args.data_column,
|
227 |
+
# fim_rate=args.fim_rate,
|
228 |
+
# fim_spm_rate=args.fim_spm_rate,
|
229 |
+
seed=args.seed,
|
230 |
+
)
|
231 |
+
|
232 |
+
return train_dataset, valid_dataset
|
233 |
+
|
234 |
+
|
235 |
+
def run_training(args, train_data, val_data):
|
236 |
+
print("Loading the model")
|
237 |
+
# disable caching mechanism when using gradient checkpointing
|
238 |
+
model = AutoModelForCausalLM.from_pretrained(
|
239 |
+
args.model_path,
|
240 |
+
trust_remote_code=True,
|
241 |
+
use_cache=not args.no_gradient_checkpointing,
|
242 |
+
)
|
243 |
+
train_data.start_iteration = 0
|
244 |
+
|
245 |
+
print(f"Starting main loop")
|
246 |
+
|
247 |
+
training_args = TrainingArguments(
|
248 |
+
output_dir=args.output_dir,
|
249 |
+
dataloader_drop_last=True,
|
250 |
+
evaluation_strategy="steps",
|
251 |
+
max_steps=args.max_steps,
|
252 |
+
eval_steps=args.eval_freq,
|
253 |
+
save_steps=args.save_freq,
|
254 |
+
logging_steps=args.log_freq,
|
255 |
+
per_device_train_batch_size=args.batch_size,
|
256 |
+
per_device_eval_batch_size=args.batch_size,
|
257 |
+
learning_rate=args.learning_rate,
|
258 |
+
lr_scheduler_type=args.lr_scheduler_type,
|
259 |
+
warmup_steps=args.num_warmup_steps,
|
260 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
261 |
+
gradient_checkpointing=args.no_gradient_checkpointing,
|
262 |
+
fp16=args.no_fp16,
|
263 |
+
bf16=args.bf16,
|
264 |
+
weight_decay=args.weight_decay,
|
265 |
+
run_name=f"santacoder-{args.subset}",
|
266 |
+
# report_to="wandb", #I am not using that, so I just comment it out to avoid errors?
|
267 |
+
)
|
268 |
+
|
269 |
+
trainer = Trainer(
|
270 |
+
model=model, args=training_args, train_dataset=train_data, eval_dataset=val_data
|
271 |
+
)
|
272 |
+
|
273 |
+
print("Training...")
|
274 |
+
trainer.train(args.resume_from_checkpoint) #can resume here
|
275 |
+
|
276 |
+
print("Saving last checkpoint of the model")
|
277 |
+
model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))
|
278 |
+
|
279 |
+
|
280 |
+
def main(args):
|
281 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_path, use_auth_token=True)
|
282 |
+
|
283 |
+
train_dataset, eval_dataset = create_datasets(tokenizer, args)
|
284 |
+
|
285 |
+
run_training(args, train_dataset, eval_dataset)
|
286 |
+
|
287 |
+
|
288 |
+
if __name__ == "__main__":
|
289 |
+
print(sys.argv) #to abort early
|
290 |
+
args = get_args()
|
291 |
+
print(args) #see if the file actually red?
|
292 |
+
set_seed(args.seed)
|
293 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
294 |
+
|
295 |
+
logging.set_verbosity_info() #lower verbosity
|
296 |
+
|
297 |
+
main(args)
|