added training params and results
Browse files
README.md
CHANGED
@@ -1,15 +1,59 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: bigcode-openrail-m
|
3 |
datasets:
|
4 |
- bigcode/the-stack-dedup
|
5 |
pipeline_tag: text-generation
|
6 |
tags:
|
7 |
- code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
[Santacoder](https://huggingface.co/bigcode/santacoder) finetuned on [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys) for 1000 steps with a batch size of 2 and full sequence length of 2048.
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
Main purpose of this model is to explore if finetuning models improves performance on [ShaderEval](https://huggingface.co/spaces/Vipitis/ShaderEval),
|
14 |
|
15 |
License carried over from model, and the finetuning dataset holds the same license.
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- code
|
4 |
license: bigcode-openrail-m
|
5 |
datasets:
|
6 |
- bigcode/the-stack-dedup
|
7 |
pipeline_tag: text-generation
|
8 |
tags:
|
9 |
- code
|
10 |
+
- shader
|
11 |
+
widget:
|
12 |
+
- text: void mainImage( out vec4 fragColor, in vec2 fragCoord )\n{
|
13 |
+
example_title: mainImage
|
14 |
+
group: Shadertoy
|
15 |
+
model-index:
|
16 |
+
- name: santacoder-finetuned-the-stack-glsl
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: text-generation
|
20 |
+
name: ShaderEval
|
21 |
+
dataset:
|
22 |
+
type: Vipitis/Shadertoys-fine
|
23 |
+
name: Shadertoys-fine
|
24 |
+
config: return_completion
|
25 |
+
revision: 0.0.2
|
26 |
+
metrics:
|
27 |
+
- type: exact_match
|
28 |
+
value: 0.380
|
29 |
+
name: 300 samples, greedy decoding
|
30 |
+
verified: false
|
31 |
---
|
32 |
|
33 |
[Santacoder](https://huggingface.co/bigcode/santacoder) finetuned on [Shadertoys](https://huggingface.co/datasets/Vipitis/Shadertoys) for 1000 steps with a batch size of 2 and full sequence length of 2048.
|
34 |
+
adapted finetuning script found [here](./train.py)
|
35 |
+
|
36 |
+
### Finetuning parameters
|
37 |
+
```sh
|
38 |
+
python3 train.py --model_path "bigcode/santacoder" \
|
39 |
+
--dataset_name "bigcode/the-stack-dedup" \
|
40 |
+
--subset "data/glsl" \
|
41 |
+
--data_column "content" \
|
42 |
+
--split "train" \
|
43 |
+
--seq_length 2048 \
|
44 |
+
--max_steps 1000 \
|
45 |
+
--batch_size 2 \
|
46 |
+
--gradient_accumulation_steps 4 \
|
47 |
+
--learning_rate 5e-5 \
|
48 |
+
--num_warmup_steps 100 \
|
49 |
+
--eval_freq 100 \
|
50 |
+
--save_freq 100 \
|
51 |
+
--log_freq 1 \
|
52 |
+
--output_dir "checkpoint_dir" \
|
53 |
+
--no_fp16
|
54 |
+
|
55 |
+
```
|
56 |
|
57 |
+
Main purpose of this model is to explore if finetuning models improves performance on [ShaderEval](https://huggingface.co/spaces/Vipitis/ShaderEval), which reached 0.380 with 300 samples.
|
58 |
|
59 |
License carried over from model, and the finetuning dataset holds the same license.
|