Vishnou/distilbert_base_SST2
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the sst2 dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -58,50 +58,33 @@ The following hyperparameters were used during training:
|
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
-
- num_epochs:
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
-
| Training Loss | Epoch | Step
|
66 |
-
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.1682 | 1.01 | 8500 | 0.4936 | 0.8922 |
|
84 |
-
| 0.095 | 1.07 | 9000 | 0.4956 | 0.8899 |
|
85 |
-
| 0.0928 | 1.13 | 9500 | 0.6543 | 0.8716 |
|
86 |
-
| 0.0855 | 1.19 | 10000 | 0.5812 | 0.8956 |
|
87 |
-
| 0.1032 | 1.25 | 10500 | 0.6683 | 0.8716 |
|
88 |
-
| 0.0982 | 1.31 | 11000 | 0.6076 | 0.8842 |
|
89 |
-
| 0.0907 | 1.37 | 11500 | 0.5826 | 0.8956 |
|
90 |
-
| 0.1085 | 1.43 | 12000 | 0.4708 | 0.8922 |
|
91 |
-
| 0.0785 | 1.48 | 12500 | 0.5486 | 0.8956 |
|
92 |
-
| 0.0903 | 1.54 | 13000 | 0.6104 | 0.875 |
|
93 |
-
| 0.0764 | 1.6 | 13500 | 0.5576 | 0.8888 |
|
94 |
-
| 0.0982 | 1.66 | 14000 | 0.5447 | 0.8888 |
|
95 |
-
| 0.0864 | 1.72 | 14500 | 0.4833 | 0.8922 |
|
96 |
-
| 0.0888 | 1.78 | 15000 | 0.4737 | 0.8945 |
|
97 |
-
| 0.0775 | 1.84 | 15500 | 0.4818 | 0.8991 |
|
98 |
-
| 0.0958 | 1.9 | 16000 | 0.4674 | 0.8991 |
|
99 |
-
| 0.0805 | 1.96 | 16500 | 0.4747 | 0.8979 |
|
100 |
|
101 |
|
102 |
### Framework versions
|
103 |
|
104 |
- Transformers 4.35.2
|
105 |
- Pytorch 2.1.0+cu118
|
106 |
-
- Datasets 2.
|
107 |
- Tokenizers 0.15.0
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9151376146788991
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the sst2 dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3690
|
36 |
+
- Accuracy: 0.9151
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 1
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.1335 | 0.06 | 500 | 0.5579 | 0.8911 |
|
68 |
+
| 0.1666 | 0.12 | 1000 | 0.5413 | 0.8876 |
|
69 |
+
| 0.1778 | 0.18 | 1500 | 0.7077 | 0.8544 |
|
70 |
+
| 0.1746 | 0.24 | 2000 | 0.5727 | 0.875 |
|
71 |
+
| 0.1632 | 0.3 | 2500 | 0.4972 | 0.8979 |
|
72 |
+
| 0.1675 | 0.36 | 3000 | 0.4742 | 0.8991 |
|
73 |
+
| 0.1573 | 0.42 | 3500 | 0.4943 | 0.8956 |
|
74 |
+
| 0.1525 | 0.48 | 4000 | 0.4907 | 0.8819 |
|
75 |
+
| 0.1394 | 0.53 | 4500 | 0.5010 | 0.8899 |
|
76 |
+
| 0.1458 | 0.59 | 5000 | 0.5461 | 0.8876 |
|
77 |
+
| 0.1588 | 0.65 | 5500 | 0.3364 | 0.9094 |
|
78 |
+
| 0.1373 | 0.71 | 6000 | 0.4198 | 0.9163 |
|
79 |
+
| 0.138 | 0.77 | 6500 | 0.3466 | 0.9128 |
|
80 |
+
| 0.1383 | 0.83 | 7000 | 0.4064 | 0.9094 |
|
81 |
+
| 0.1371 | 0.89 | 7500 | 0.4083 | 0.9002 |
|
82 |
+
| 0.1373 | 0.95 | 8000 | 0.3690 | 0.9151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
### Framework versions
|
86 |
|
87 |
- Transformers 4.35.2
|
88 |
- Pytorch 2.1.0+cu118
|
89 |
+
- Datasets 2.15.0
|
90 |
- Tokenizers 0.15.0
|