VitaliiVrublevskyi commited on
Commit
1ff9cc4
·
1 Parent(s): 965ff93

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: ibert-roberta-base-finetuned-mrpc
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: mrpc
19
+ split: validation
20
+ args: mrpc
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8578431372549019
25
+ - name: F1
26
+ type: f1
27
+ value: 0.8953068592057761
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # ibert-roberta-base-finetuned-mrpc
34
+
35
+ This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) on the glue dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.3775
38
+ - Accuracy: 0.8578
39
+ - F1: 0.8953
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 2e-05
59
+ - train_batch_size: 32
60
+ - eval_batch_size: 32
61
+ - seed: 24
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 3
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
70
+ | No log | 1.0 | 115 | 0.4043 | 0.8309 | 0.8821 |
71
+ | No log | 2.0 | 230 | 0.3885 | 0.8456 | 0.8927 |
72
+ | No log | 3.0 | 345 | 0.3775 | 0.8578 | 0.8953 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.0
78
+ - Pytorch 2.0.1+cu118
79
+ - Datasets 2.14.5
80
+ - Tokenizers 0.13.3