File size: 1,735 Bytes
366a843
 
 
 
 
 
 
 
 
 
 
 
 
053f050
 
676f524
366a843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
053f050
366a843
 
 
 
 
a7583e3
053f050
 
 
 
a7583e3
 
676f524
 
 
 
 
 
 
 
 
 
053f050
366a843
 
 
 
676f524
366a843
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
tags:
- generated_from_trainer
model-index:
- name: longformer_sciq
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer_sciq

This model is a fine-tuned version of [VuongQuoc/longformer_sciq](https://huggingface.co/VuongQuoc/longformer_sciq) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5326

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1931        | 0.2   | 20   | 0.7457          |
| 0.7677        | 0.4   | 40   | 0.7063          |
| 1.0391        | 0.6   | 60   | 0.6745          |
| 1.2915        | 0.8   | 80   | 0.6316          |
| 1.1399        | 1.0   | 100  | 0.6652          |
| 0.9975        | 1.2   | 120  | 0.6134          |
| 0.9232        | 1.4   | 140  | 0.5561          |
| 0.8026        | 1.6   | 160  | 0.5422          |
| 0.7188        | 1.8   | 180  | 0.5370          |
| 0.7272        | 2.0   | 200  | 0.5326          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0+cpu
- Datasets 2.1.0
- Tokenizers 0.13.3