Warrieryes commited on
Commit
22f3f68
·
1 Parent(s): 50eda64

commit from szc

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/suzhaochen/hugging-models/Llama-2-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 32,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.36.2",
26
+ "use_cache": true,
27
+ "vocab_size": 32001
28
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.36.2"
10
+ }
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8a5e84e4cec402110e6ebeec6b1bac8ad4fa4a1aaf09dca57a285df74f96f3d
3
+ size 4840412800
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fc98487fc83653188f85fe2c5a61edb1822ac5d59568c6dadfbd437b495eb47
3
+ size 4857206856
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdc6d6201d36d678d30a968f341dd628522293df3aac54d6e2c028ee4d8e53c3
3
+ size 4857206904
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:930af43cbc69a3214f568903fb1c63c9b55023a19456afee6579b82a4c410c4d
3
+ size 4857206904
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90e8920465989aad1d8586b37a870e272b3da460a9bdbe64901c32c6db86bf61
3
+ size 4857206904
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a8b58db877e74fac464d651642de45f7e0672c266946664d315544564bac808
3
+ size 2684488496
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26953695232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00006-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00006-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
296
+ "model.norm.weight": "model-00006-of-00006.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1024,
43
+ "pad_token": "[PAD]",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": false
50
+ }
trainer_state.json ADDED
@@ -0,0 +1,2370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9961612284069097,
5
+ "eval_steps": 500,
6
+ "global_step": 390,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1.6666666666666667e-06,
14
+ "loss": 0.976,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 3.3333333333333333e-06,
20
+ "loss": 1.0889,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 5e-06,
26
+ "loss": 1.0516,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 6.666666666666667e-06,
32
+ "loss": 1.0442,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 8.333333333333334e-06,
38
+ "loss": 0.9154,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 1e-05,
44
+ "loss": 0.8071,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 1.1666666666666668e-05,
50
+ "loss": 0.8045,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 1.3333333333333333e-05,
56
+ "loss": 0.9049,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.05,
61
+ "learning_rate": 1.5000000000000002e-05,
62
+ "loss": 0.7444,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.05,
67
+ "learning_rate": 1.6666666666666667e-05,
68
+ "loss": 0.8022,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.06,
73
+ "learning_rate": 1.8333333333333333e-05,
74
+ "loss": 0.8045,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.06,
79
+ "learning_rate": 2e-05,
80
+ "loss": 0.786,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.07,
85
+ "learning_rate": 1.999965463076377e-05,
86
+ "loss": 0.7576,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.07,
91
+ "learning_rate": 1.999861854691106e-05,
92
+ "loss": 0.7801,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.08,
97
+ "learning_rate": 1.9996891820008165e-05,
98
+ "loss": 0.7678,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.08,
103
+ "learning_rate": 1.999447456932676e-05,
104
+ "loss": 0.7011,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.09,
109
+ "learning_rate": 1.9991366961835643e-05,
110
+ "loss": 0.8029,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.09,
115
+ "learning_rate": 1.9987569212189224e-05,
116
+ "loss": 0.7107,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.1,
121
+ "learning_rate": 1.9983081582712684e-05,
122
+ "loss": 0.7184,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.1,
127
+ "learning_rate": 1.997790438338385e-05,
128
+ "loss": 0.7116,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.11,
133
+ "learning_rate": 1.9972037971811802e-05,
134
+ "loss": 0.7298,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.11,
139
+ "learning_rate": 1.9965482753212154e-05,
140
+ "loss": 0.7372,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.12,
145
+ "learning_rate": 1.995823918037908e-05,
146
+ "loss": 0.7515,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.12,
151
+ "learning_rate": 1.9950307753654016e-05,
152
+ "loss": 0.708,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.13,
157
+ "learning_rate": 1.994168902089112e-05,
158
+ "loss": 0.7191,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.13,
163
+ "learning_rate": 1.9932383577419432e-05,
164
+ "loss": 0.7124,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.14,
169
+ "learning_rate": 1.9922392066001724e-05,
170
+ "loss": 0.7441,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.14,
175
+ "learning_rate": 1.991171517679013e-05,
176
+ "loss": 0.7104,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.15,
181
+ "learning_rate": 1.9900353647278466e-05,
182
+ "loss": 0.685,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.15,
187
+ "learning_rate": 1.9888308262251286e-05,
188
+ "loss": 0.6841,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.16,
193
+ "learning_rate": 1.9875579853729677e-05,
194
+ "loss": 0.6772,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.16,
199
+ "learning_rate": 1.9862169300913784e-05,
200
+ "loss": 0.6912,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.17,
205
+ "learning_rate": 1.9848077530122083e-05,
206
+ "loss": 0.7304,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.17,
211
+ "learning_rate": 1.9833305514727396e-05,
212
+ "loss": 0.6452,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.18,
217
+ "learning_rate": 1.981785427508966e-05,
218
+ "loss": 0.673,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.18,
223
+ "learning_rate": 1.9801724878485438e-05,
224
+ "loss": 0.689,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.19,
229
+ "learning_rate": 1.9784918439034216e-05,
230
+ "loss": 0.7039,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.19,
235
+ "learning_rate": 1.9767436117621416e-05,
236
+ "loss": 0.7361,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.2,
241
+ "learning_rate": 1.9749279121818235e-05,
242
+ "loss": 0.6826,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.2,
247
+ "learning_rate": 1.973044870579824e-05,
248
+ "loss": 0.6094,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.21,
253
+ "learning_rate": 1.9710946170250702e-05,
254
+ "loss": 0.667,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.21,
259
+ "learning_rate": 1.969077286229078e-05,
260
+ "loss": 0.6549,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.22,
265
+ "learning_rate": 1.9669930175366474e-05,
266
+ "loss": 0.6342,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.23,
271
+ "learning_rate": 1.964841954916235e-05,
272
+ "loss": 0.666,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.23,
277
+ "learning_rate": 1.962624246950012e-05,
278
+ "loss": 0.6416,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.24,
283
+ "learning_rate": 1.9603400468236e-05,
284
+ "loss": 0.6966,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.24,
289
+ "learning_rate": 1.957989512315489e-05,
290
+ "loss": 0.6545,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.25,
295
+ "learning_rate": 1.955572805786141e-05,
296
+ "loss": 0.634,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.25,
301
+ "learning_rate": 1.9530900941667733e-05,
302
+ "loss": 0.6945,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.26,
307
+ "learning_rate": 1.9505415489478293e-05,
308
+ "loss": 0.6561,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.26,
313
+ "learning_rate": 1.947927346167132e-05,
314
+ "loss": 0.6611,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.27,
319
+ "learning_rate": 1.945247666397725e-05,
320
+ "loss": 0.6934,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.27,
325
+ "learning_rate": 1.9425026947353994e-05,
326
+ "loss": 0.6464,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.28,
331
+ "learning_rate": 1.9396926207859085e-05,
332
+ "loss": 0.645,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.28,
337
+ "learning_rate": 1.936817638651871e-05,
338
+ "loss": 0.6702,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.29,
343
+ "learning_rate": 1.9338779469193638e-05,
344
+ "loss": 0.6402,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.29,
349
+ "learning_rate": 1.9308737486442045e-05,
350
+ "loss": 0.6362,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.3,
355
+ "learning_rate": 1.9278052513379256e-05,
356
+ "loss": 0.64,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.3,
361
+ "learning_rate": 1.9246726669534416e-05,
362
+ "loss": 0.6144,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.31,
367
+ "learning_rate": 1.921476211870408e-05,
368
+ "loss": 0.6316,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.31,
373
+ "learning_rate": 1.9182161068802742e-05,
374
+ "loss": 0.6689,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.32,
379
+ "learning_rate": 1.9148925771710347e-05,
380
+ "loss": 0.6518,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.32,
385
+ "learning_rate": 1.9115058523116734e-05,
386
+ "loss": 0.5923,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.33,
391
+ "learning_rate": 1.908056166236305e-05,
392
+ "loss": 0.6988,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.33,
397
+ "learning_rate": 1.9045437572280193e-05,
398
+ "loss": 0.601,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.34,
403
+ "learning_rate": 1.900968867902419e-05,
404
+ "loss": 0.6722,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.34,
409
+ "learning_rate": 1.8973317451908642e-05,
410
+ "loss": 0.6582,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.35,
415
+ "learning_rate": 1.8936326403234125e-05,
416
+ "loss": 0.6201,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.35,
421
+ "learning_rate": 1.8898718088114688e-05,
422
+ "loss": 0.6033,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.36,
427
+ "learning_rate": 1.8860495104301346e-05,
428
+ "loss": 0.6243,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.36,
433
+ "learning_rate": 1.8821660092002642e-05,
434
+ "loss": 0.6268,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.37,
439
+ "learning_rate": 1.8782215733702286e-05,
440
+ "loss": 0.6348,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.37,
445
+ "learning_rate": 1.874216475397386e-05,
446
+ "loss": 0.6298,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.38,
451
+ "learning_rate": 1.870150991929261e-05,
452
+ "loss": 0.6497,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.38,
457
+ "learning_rate": 1.866025403784439e-05,
458
+ "loss": 0.6562,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.39,
463
+ "learning_rate": 1.8618399959331642e-05,
464
+ "loss": 0.5886,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.39,
469
+ "learning_rate": 1.8575950574776595e-05,
470
+ "loss": 0.5922,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.4,
475
+ "learning_rate": 1.8532908816321557e-05,
476
+ "loss": 0.6052,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.4,
481
+ "learning_rate": 1.8489277657026377e-05,
482
+ "loss": 0.6444,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.41,
487
+ "learning_rate": 1.844506011066308e-05,
488
+ "loss": 0.6532,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.41,
493
+ "learning_rate": 1.8400259231507716e-05,
494
+ "loss": 0.5913,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.42,
499
+ "learning_rate": 1.8354878114129368e-05,
500
+ "loss": 0.6115,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.42,
505
+ "learning_rate": 1.8308919893176397e-05,
506
+ "loss": 0.6151,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.43,
511
+ "learning_rate": 1.826238774315995e-05,
512
+ "loss": 0.6356,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.44,
517
+ "learning_rate": 1.8215284878234644e-05,
518
+ "loss": 0.6219,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.44,
523
+ "learning_rate": 1.816761455197657e-05,
524
+ "loss": 0.5587,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.45,
529
+ "learning_rate": 1.811938005715857e-05,
530
+ "loss": 0.5837,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.45,
535
+ "learning_rate": 1.8070584725522763e-05,
536
+ "loss": 0.6195,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.46,
541
+ "learning_rate": 1.802123192755044e-05,
542
+ "loss": 0.5801,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.46,
547
+ "learning_rate": 1.7971325072229227e-05,
548
+ "loss": 0.6022,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.47,
553
+ "learning_rate": 1.7920867606817625e-05,
554
+ "loss": 0.5874,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.47,
559
+ "learning_rate": 1.7869863016606893e-05,
560
+ "loss": 0.5941,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.48,
565
+ "learning_rate": 1.78183148246803e-05,
566
+ "loss": 0.5673,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.48,
571
+ "learning_rate": 1.7766226591669787e-05,
572
+ "loss": 0.5274,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.49,
577
+ "learning_rate": 1.771360191551e-05,
578
+ "loss": 0.5781,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.49,
583
+ "learning_rate": 1.766044443118978e-05,
584
+ "loss": 0.5466,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.5,
589
+ "learning_rate": 1.760675781050109e-05,
590
+ "loss": 0.5735,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.5,
595
+ "learning_rate": 1.755254576178535e-05,
596
+ "loss": 0.611,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.51,
601
+ "learning_rate": 1.7497812029677344e-05,
602
+ "loss": 0.5805,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.51,
607
+ "learning_rate": 1.7442560394846518e-05,
608
+ "loss": 0.6469,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.52,
613
+ "learning_rate": 1.738679467373586e-05,
614
+ "loss": 0.5659,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.52,
619
+ "learning_rate": 1.7330518718298263e-05,
620
+ "loss": 0.6031,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.53,
625
+ "learning_rate": 1.7273736415730488e-05,
626
+ "loss": 0.5683,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.53,
631
+ "learning_rate": 1.7216451688204623e-05,
632
+ "loss": 0.5778,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.54,
637
+ "learning_rate": 1.7158668492597186e-05,
638
+ "loss": 0.5899,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.54,
643
+ "learning_rate": 1.7100390820215805e-05,
644
+ "loss": 0.5718,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.55,
649
+ "learning_rate": 1.704162269652352e-05,
650
+ "loss": 0.621,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.55,
655
+ "learning_rate": 1.698236818086073e-05,
656
+ "loss": 0.5605,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.56,
661
+ "learning_rate": 1.6922631366164795e-05,
662
+ "loss": 0.5819,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.56,
667
+ "learning_rate": 1.686241637868734e-05,
668
+ "loss": 0.5916,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.57,
673
+ "learning_rate": 1.6801727377709195e-05,
674
+ "loss": 0.5853,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.57,
679
+ "learning_rate": 1.6740568555253153e-05,
680
+ "loss": 0.5812,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.58,
685
+ "learning_rate": 1.6678944135794375e-05,
686
+ "loss": 0.5458,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.58,
691
+ "learning_rate": 1.6616858375968596e-05,
692
+ "loss": 0.5753,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.59,
697
+ "learning_rate": 1.6554315564278102e-05,
698
+ "loss": 0.5455,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.59,
703
+ "learning_rate": 1.649132002079552e-05,
704
+ "loss": 0.6005,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.6,
709
+ "learning_rate": 1.6427876096865394e-05,
710
+ "loss": 0.5967,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.6,
715
+ "learning_rate": 1.6363988174803638e-05,
716
+ "loss": 0.5674,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.61,
721
+ "learning_rate": 1.6299660667594814e-05,
722
+ "loss": 0.5659,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.61,
727
+ "learning_rate": 1.6234898018587336e-05,
728
+ "loss": 0.5563,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.62,
733
+ "learning_rate": 1.6169704701186528e-05,
734
+ "loss": 0.571,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.62,
739
+ "learning_rate": 1.6104085218545633e-05,
740
+ "loss": 0.593,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.63,
745
+ "learning_rate": 1.6038044103254775e-05,
746
+ "loss": 0.5485,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.63,
751
+ "learning_rate": 1.5971585917027864e-05,
752
+ "loss": 0.5426,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.64,
757
+ "learning_rate": 1.5904715250387498e-05,
758
+ "loss": 0.5758,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.64,
763
+ "learning_rate": 1.5837436722347902e-05,
764
+ "loss": 0.5921,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.65,
769
+ "learning_rate": 1.576975498009583e-05,
770
+ "loss": 0.5577,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.66,
775
+ "learning_rate": 1.570167469866962e-05,
776
+ "loss": 0.5053,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.66,
781
+ "learning_rate": 1.563320058063622e-05,
782
+ "loss": 0.5801,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.67,
787
+ "learning_rate": 1.5564337355766412e-05,
788
+ "loss": 0.5667,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.67,
793
+ "learning_rate": 1.5495089780708062e-05,
794
+ "loss": 0.5525,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.68,
799
+ "learning_rate": 1.5425462638657597e-05,
800
+ "loss": 0.565,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.68,
805
+ "learning_rate": 1.5355460739029585e-05,
806
+ "loss": 0.5496,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.69,
811
+ "learning_rate": 1.5285088917124555e-05,
812
+ "loss": 0.537,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.69,
817
+ "learning_rate": 1.5214352033794981e-05,
818
+ "loss": 0.5648,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.7,
823
+ "learning_rate": 1.5143254975109538e-05,
824
+ "loss": 0.5768,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.7,
829
+ "learning_rate": 1.5071802652015592e-05,
830
+ "loss": 0.5166,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.71,
835
+ "learning_rate": 1.5000000000000002e-05,
836
+ "loss": 0.5731,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.71,
841
+ "learning_rate": 1.4927851978748177e-05,
842
+ "loss": 0.5489,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.72,
847
+ "learning_rate": 1.4855363571801523e-05,
848
+ "loss": 0.5946,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.72,
853
+ "learning_rate": 1.4782539786213184e-05,
854
+ "loss": 0.5283,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.73,
859
+ "learning_rate": 1.4709385652202204e-05,
860
+ "loss": 0.5168,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.73,
865
+ "learning_rate": 1.4635906222806058e-05,
866
+ "loss": 0.5446,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.74,
871
+ "learning_rate": 1.4562106573531632e-05,
872
+ "loss": 0.5433,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.74,
877
+ "learning_rate": 1.4487991802004625e-05,
878
+ "loss": 0.5433,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.75,
883
+ "learning_rate": 1.4413567027617442e-05,
884
+ "loss": 0.5404,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.75,
889
+ "learning_rate": 1.4338837391175582e-05,
890
+ "loss": 0.5319,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.76,
895
+ "learning_rate": 1.4263808054542541e-05,
896
+ "loss": 0.5363,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.76,
901
+ "learning_rate": 1.418848420028325e-05,
902
+ "loss": 0.5518,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.77,
907
+ "learning_rate": 1.4112871031306118e-05,
908
+ "loss": 0.4885,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.77,
913
+ "learning_rate": 1.4036973770503623e-05,
914
+ "loss": 0.54,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.78,
919
+ "learning_rate": 1.396079766039157e-05,
920
+ "loss": 0.5192,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.78,
925
+ "learning_rate": 1.3884347962746949e-05,
926
+ "loss": 0.5538,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.79,
931
+ "learning_rate": 1.3807629958244498e-05,
932
+ "loss": 0.5061,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.79,
937
+ "learning_rate": 1.373064894609194e-05,
938
+ "loss": 0.5201,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.8,
943
+ "learning_rate": 1.3653410243663953e-05,
944
+ "loss": 0.5383,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.8,
949
+ "learning_rate": 1.3575919186134862e-05,
950
+ "loss": 0.565,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.81,
955
+ "learning_rate": 1.349818112611015e-05,
956
+ "loss": 0.5636,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.81,
961
+ "learning_rate": 1.342020143325669e-05,
962
+ "loss": 0.5505,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.82,
967
+ "learning_rate": 1.3341985493931877e-05,
968
+ "loss": 0.5721,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.82,
973
+ "learning_rate": 1.3263538710811559e-05,
974
+ "loss": 0.4852,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.83,
979
+ "learning_rate": 1.3184866502516846e-05,
980
+ "loss": 0.5074,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.83,
985
+ "learning_rate": 1.3105974303239838e-05,
986
+ "loss": 0.5606,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.84,
991
+ "learning_rate": 1.3026867562368262e-05,
992
+ "loss": 0.5678,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.84,
997
+ "learning_rate": 1.2947551744109044e-05,
998
+ "loss": 0.5402,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.85,
1003
+ "learning_rate": 1.2868032327110904e-05,
1004
+ "loss": 0.5172,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.85,
1009
+ "learning_rate": 1.2788314804085904e-05,
1010
+ "loss": 0.5358,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.86,
1015
+ "learning_rate": 1.2708404681430054e-05,
1016
+ "loss": 0.5312,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.87,
1021
+ "learning_rate": 1.2628307478842955e-05,
1022
+ "loss": 0.5445,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.87,
1027
+ "learning_rate": 1.2548028728946548e-05,
1028
+ "loss": 0.5613,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.88,
1033
+ "learning_rate": 1.2467573976902936e-05,
1034
+ "loss": 0.5302,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.88,
1039
+ "learning_rate": 1.238694878003138e-05,
1040
+ "loss": 0.5078,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.89,
1045
+ "learning_rate": 1.2306158707424402e-05,
1046
+ "loss": 0.5054,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.89,
1051
+ "learning_rate": 1.2225209339563144e-05,
1052
+ "loss": 0.5123,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.9,
1057
+ "learning_rate": 1.2144106267931877e-05,
1058
+ "loss": 0.5358,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.9,
1063
+ "learning_rate": 1.2062855094631777e-05,
1064
+ "loss": 0.56,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.91,
1069
+ "learning_rate": 1.1981461431993978e-05,
1070
+ "loss": 0.54,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.91,
1075
+ "learning_rate": 1.1899930902191904e-05,
1076
+ "loss": 0.5478,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.92,
1081
+ "learning_rate": 1.181826913685291e-05,
1082
+ "loss": 0.5194,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.92,
1087
+ "learning_rate": 1.1736481776669307e-05,
1088
+ "loss": 0.5653,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.93,
1093
+ "learning_rate": 1.1654574471008712e-05,
1094
+ "loss": 0.4922,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.93,
1099
+ "learning_rate": 1.1572552877523855e-05,
1100
+ "loss": 0.5214,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.94,
1105
+ "learning_rate": 1.1490422661761744e-05,
1106
+ "loss": 0.4977,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.94,
1111
+ "learning_rate": 1.1408189496772369e-05,
1112
+ "loss": 0.5505,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.95,
1117
+ "learning_rate": 1.1325859062716795e-05,
1118
+ "loss": 0.5024,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.95,
1123
+ "learning_rate": 1.1243437046474854e-05,
1124
+ "loss": 0.5251,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.96,
1129
+ "learning_rate": 1.1160929141252303e-05,
1130
+ "loss": 0.5484,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.96,
1135
+ "learning_rate": 1.1078341046187588e-05,
1136
+ "loss": 0.5381,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.97,
1141
+ "learning_rate": 1.0995678465958168e-05,
1142
+ "loss": 0.4959,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.97,
1147
+ "learning_rate": 1.0912947110386484e-05,
1148
+ "loss": 0.5104,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.98,
1153
+ "learning_rate": 1.0830152694045553e-05,
1154
+ "loss": 0.4918,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.98,
1159
+ "learning_rate": 1.0747300935864245e-05,
1160
+ "loss": 0.5424,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.99,
1165
+ "learning_rate": 1.0664397558732245e-05,
1166
+ "loss": 0.4953,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.99,
1171
+ "learning_rate": 1.0581448289104759e-05,
1172
+ "loss": 0.527,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.0,
1177
+ "learning_rate": 1.0498458856606972e-05,
1178
+ "loss": 0.5497,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.0,
1183
+ "learning_rate": 1.0415434993638269e-05,
1184
+ "loss": 0.4698,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.01,
1189
+ "learning_rate": 1.0332382434976267e-05,
1190
+ "loss": 0.3475,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.01,
1195
+ "learning_rate": 1.0249306917380731e-05,
1196
+ "loss": 0.4007,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.02,
1201
+ "learning_rate": 1.0166214179197265e-05,
1202
+ "loss": 0.3814,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.02,
1207
+ "learning_rate": 1.0083109959960974e-05,
1208
+ "loss": 0.3838,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.03,
1213
+ "learning_rate": 1e-05,
1214
+ "loss": 0.3688,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.03,
1219
+ "learning_rate": 9.916890040039031e-06,
1220
+ "loss": 0.3937,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.04,
1225
+ "learning_rate": 9.833785820802739e-06,
1226
+ "loss": 0.3287,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.04,
1231
+ "learning_rate": 9.750693082619274e-06,
1232
+ "loss": 0.3906,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.05,
1237
+ "learning_rate": 9.667617565023734e-06,
1238
+ "loss": 0.4174,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.05,
1243
+ "learning_rate": 9.584565006361735e-06,
1244
+ "loss": 0.4,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.06,
1249
+ "learning_rate": 9.501541143393028e-06,
1250
+ "loss": 0.3431,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.06,
1255
+ "learning_rate": 9.418551710895243e-06,
1256
+ "loss": 0.352,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.07,
1261
+ "learning_rate": 9.33560244126776e-06,
1262
+ "loss": 0.3633,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.07,
1267
+ "learning_rate": 9.252699064135759e-06,
1268
+ "loss": 0.3844,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.08,
1273
+ "learning_rate": 9.169847305954448e-06,
1274
+ "loss": 0.3414,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.09,
1279
+ "learning_rate": 9.087052889613519e-06,
1280
+ "loss": 0.3803,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.09,
1285
+ "learning_rate": 9.004321534041836e-06,
1286
+ "loss": 0.3827,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.1,
1291
+ "learning_rate": 8.921658953812416e-06,
1292
+ "loss": 0.3358,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.1,
1297
+ "learning_rate": 8.839070858747697e-06,
1298
+ "loss": 0.3669,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.11,
1303
+ "learning_rate": 8.756562953525151e-06,
1304
+ "loss": 0.3405,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.11,
1309
+ "learning_rate": 8.674140937283208e-06,
1310
+ "loss": 0.3535,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.12,
1315
+ "learning_rate": 8.591810503227634e-06,
1316
+ "loss": 0.3346,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.12,
1321
+ "learning_rate": 8.509577338238255e-06,
1322
+ "loss": 0.3597,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.13,
1327
+ "learning_rate": 8.427447122476148e-06,
1328
+ "loss": 0.3383,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.13,
1333
+ "learning_rate": 8.34542552899129e-06,
1334
+ "loss": 0.329,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.14,
1339
+ "learning_rate": 8.263518223330698e-06,
1340
+ "loss": 0.3833,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.14,
1345
+ "learning_rate": 8.181730863147094e-06,
1346
+ "loss": 0.3895,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.15,
1351
+ "learning_rate": 8.100069097808103e-06,
1352
+ "loss": 0.4046,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.15,
1357
+ "learning_rate": 8.018538568006027e-06,
1358
+ "loss": 0.3605,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.16,
1363
+ "learning_rate": 7.937144905368226e-06,
1364
+ "loss": 0.3349,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.16,
1369
+ "learning_rate": 7.855893732068124e-06,
1370
+ "loss": 0.3799,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.17,
1375
+ "learning_rate": 7.774790660436857e-06,
1376
+ "loss": 0.3595,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.17,
1381
+ "learning_rate": 7.6938412925756e-06,
1382
+ "loss": 0.3914,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.18,
1387
+ "learning_rate": 7.613051219968624e-06,
1388
+ "loss": 0.3809,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 1.18,
1393
+ "learning_rate": 7.532426023097063e-06,
1394
+ "loss": 0.3735,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 1.19,
1399
+ "learning_rate": 7.451971271053455e-06,
1400
+ "loss": 0.3383,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 1.19,
1405
+ "learning_rate": 7.371692521157048e-06,
1406
+ "loss": 0.352,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 1.2,
1411
+ "learning_rate": 7.291595318569951e-06,
1412
+ "loss": 0.3623,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 1.2,
1417
+ "learning_rate": 7.2116851959140965e-06,
1418
+ "loss": 0.3862,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 1.21,
1423
+ "learning_rate": 7.131967672889101e-06,
1424
+ "loss": 0.3456,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 1.21,
1429
+ "learning_rate": 7.052448255890958e-06,
1430
+ "loss": 0.3511,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 1.22,
1435
+ "learning_rate": 6.973132437631743e-06,
1436
+ "loss": 0.3538,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 1.22,
1441
+ "learning_rate": 6.8940256967601625e-06,
1442
+ "loss": 0.3419,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 1.23,
1447
+ "learning_rate": 6.815133497483157e-06,
1448
+ "loss": 0.322,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 1.23,
1453
+ "learning_rate": 6.736461289188445e-06,
1454
+ "loss": 0.3453,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 1.24,
1459
+ "learning_rate": 6.6580145060681255e-06,
1460
+ "loss": 0.3638,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 1.24,
1465
+ "learning_rate": 6.579798566743314e-06,
1466
+ "loss": 0.3489,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 1.25,
1471
+ "learning_rate": 6.501818873889856e-06,
1472
+ "loss": 0.3718,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 1.25,
1477
+ "learning_rate": 6.424080813865139e-06,
1478
+ "loss": 0.3421,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 1.26,
1483
+ "learning_rate": 6.34658975633605e-06,
1484
+ "loss": 0.3703,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 1.26,
1489
+ "learning_rate": 6.269351053908061e-06,
1490
+ "loss": 0.3663,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 1.27,
1495
+ "learning_rate": 6.192370041755505e-06,
1496
+ "loss": 0.3639,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 1.27,
1501
+ "learning_rate": 6.115652037253054e-06,
1502
+ "loss": 0.354,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 1.28,
1507
+ "learning_rate": 6.039202339608432e-06,
1508
+ "loss": 0.387,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 1.28,
1513
+ "learning_rate": 5.963026229496378e-06,
1514
+ "loss": 0.3497,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 1.29,
1519
+ "learning_rate": 5.887128968693887e-06,
1520
+ "loss": 0.3506,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 1.29,
1525
+ "learning_rate": 5.811515799716754e-06,
1526
+ "loss": 0.3564,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 1.3,
1531
+ "learning_rate": 5.736191945457463e-06,
1532
+ "loss": 0.372,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 1.31,
1537
+ "learning_rate": 5.66116260882442e-06,
1538
+ "loss": 0.3864,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 1.31,
1543
+ "learning_rate": 5.586432972382561e-06,
1544
+ "loss": 0.3509,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 1.32,
1549
+ "learning_rate": 5.512008197995379e-06,
1550
+ "loss": 0.33,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 1.32,
1555
+ "learning_rate": 5.43789342646837e-06,
1556
+ "loss": 0.3502,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 1.33,
1561
+ "learning_rate": 5.364093777193944e-06,
1562
+ "loss": 0.3871,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 1.33,
1567
+ "learning_rate": 5.290614347797802e-06,
1568
+ "loss": 0.3443,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 1.34,
1573
+ "learning_rate": 5.217460213786822e-06,
1574
+ "loss": 0.3523,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 1.34,
1579
+ "learning_rate": 5.144636428198477e-06,
1580
+ "loss": 0.3418,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 1.35,
1585
+ "learning_rate": 5.072148021251822e-06,
1586
+ "loss": 0.362,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 1.35,
1591
+ "learning_rate": 5.000000000000003e-06,
1592
+ "loss": 0.3536,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 1.36,
1597
+ "learning_rate": 4.92819734798441e-06,
1598
+ "loss": 0.3204,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 1.36,
1603
+ "learning_rate": 4.856745024890466e-06,
1604
+ "loss": 0.3443,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 1.37,
1609
+ "learning_rate": 4.78564796620502e-06,
1610
+ "loss": 0.3452,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 1.37,
1615
+ "learning_rate": 4.714911082875446e-06,
1616
+ "loss": 0.335,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 1.38,
1621
+ "learning_rate": 4.644539260970417e-06,
1622
+ "loss": 0.3533,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 1.38,
1627
+ "learning_rate": 4.5745373613424075e-06,
1628
+ "loss": 0.3615,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 1.39,
1633
+ "learning_rate": 4.504910219291941e-06,
1634
+ "loss": 0.3504,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 1.39,
1639
+ "learning_rate": 4.435662644233594e-06,
1640
+ "loss": 0.35,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 1.4,
1645
+ "learning_rate": 4.3667994193637794e-06,
1646
+ "loss": 0.3265,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 1.4,
1651
+ "learning_rate": 4.298325301330383e-06,
1652
+ "loss": 0.3376,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 1.41,
1657
+ "learning_rate": 4.23024501990417e-06,
1658
+ "loss": 0.3586,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 1.41,
1663
+ "learning_rate": 4.162563277652104e-06,
1664
+ "loss": 0.3414,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 1.42,
1669
+ "learning_rate": 4.095284749612504e-06,
1670
+ "loss": 0.3386,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 1.42,
1675
+ "learning_rate": 4.028414082972141e-06,
1676
+ "loss": 0.3291,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 1.43,
1681
+ "learning_rate": 3.961955896745224e-06,
1682
+ "loss": 0.314,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 1.43,
1687
+ "learning_rate": 3.89591478145437e-06,
1688
+ "loss": 0.3626,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 1.44,
1693
+ "learning_rate": 3.830295298813475e-06,
1694
+ "loss": 0.336,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 1.44,
1699
+ "learning_rate": 3.7651019814126656e-06,
1700
+ "loss": 0.3582,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 1.45,
1705
+ "learning_rate": 3.7003393324051874e-06,
1706
+ "loss": 0.3337,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 1.45,
1711
+ "learning_rate": 3.636011825196365e-06,
1712
+ "loss": 0.3402,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 1.46,
1717
+ "learning_rate": 3.5721239031346067e-06,
1718
+ "loss": 0.3157,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 1.46,
1723
+ "learning_rate": 3.5086799792044812e-06,
1724
+ "loss": 0.321,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 1.47,
1729
+ "learning_rate": 3.4456844357218977e-06,
1730
+ "loss": 0.3552,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 1.47,
1735
+ "learning_rate": 3.3831416240314085e-06,
1736
+ "loss": 0.3274,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 1.48,
1741
+ "learning_rate": 3.3210558642056277e-06,
1742
+ "loss": 0.3862,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 1.48,
1747
+ "learning_rate": 3.2594314447468457e-06,
1748
+ "loss": 0.3398,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 1.49,
1753
+ "learning_rate": 3.1982726222908046e-06,
1754
+ "loss": 0.3404,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 1.49,
1759
+ "learning_rate": 3.1375836213126653e-06,
1760
+ "loss": 0.3497,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 1.5,
1765
+ "learning_rate": 3.077368633835205e-06,
1766
+ "loss": 0.3232,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 1.5,
1771
+ "learning_rate": 3.017631819139273e-06,
1772
+ "loss": 0.3984,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 1.51,
1777
+ "learning_rate": 2.958377303476483e-06,
1778
+ "loss": 0.3158,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 1.52,
1783
+ "learning_rate": 2.8996091797841976e-06,
1784
+ "loss": 0.2874,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 1.52,
1789
+ "learning_rate": 2.8413315074028157e-06,
1790
+ "loss": 0.3272,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 1.53,
1795
+ "learning_rate": 2.783548311795379e-06,
1796
+ "loss": 0.3412,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 1.53,
1801
+ "learning_rate": 2.726263584269513e-06,
1802
+ "loss": 0.3036,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 1.54,
1807
+ "learning_rate": 2.669481281701739e-06,
1808
+ "loss": 0.3386,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 1.54,
1813
+ "learning_rate": 2.6132053262641467e-06,
1814
+ "loss": 0.3404,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 1.55,
1819
+ "learning_rate": 2.5574396051534835e-06,
1820
+ "loss": 0.3025,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 1.55,
1825
+ "learning_rate": 2.502187970322657e-06,
1826
+ "loss": 0.3014,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 1.56,
1831
+ "learning_rate": 2.447454238214654e-06,
1832
+ "loss": 0.3266,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 1.56,
1837
+ "learning_rate": 2.3932421894989167e-06,
1838
+ "loss": 0.3144,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 1.57,
1843
+ "learning_rate": 2.339555568810221e-06,
1844
+ "loss": 0.3544,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 1.57,
1849
+ "learning_rate": 2.2863980844900036e-06,
1850
+ "loss": 0.3037,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 1.58,
1855
+ "learning_rate": 2.2337734083302164e-06,
1856
+ "loss": 0.3378,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 1.58,
1861
+ "learning_rate": 2.1816851753197023e-06,
1862
+ "loss": 0.3438,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 1.59,
1867
+ "learning_rate": 2.130136983393112e-06,
1868
+ "loss": 0.3218,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 1.59,
1873
+ "learning_rate": 2.0791323931823783e-06,
1874
+ "loss": 0.3144,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 1.6,
1879
+ "learning_rate": 2.0286749277707783e-06,
1880
+ "loss": 0.3615,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 1.6,
1885
+ "learning_rate": 1.9787680724495617e-06,
1886
+ "loss": 0.329,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 1.61,
1891
+ "learning_rate": 1.929415274477239e-06,
1892
+ "loss": 0.348,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 1.61,
1897
+ "learning_rate": 1.880619942841435e-06,
1898
+ "loss": 0.3119,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 1.62,
1903
+ "learning_rate": 1.8323854480234348e-06,
1904
+ "loss": 0.3304,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 1.62,
1909
+ "learning_rate": 1.7847151217653624e-06,
1910
+ "loss": 0.3615,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 1.63,
1915
+ "learning_rate": 1.7376122568400533e-06,
1916
+ "loss": 0.3315,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 1.63,
1921
+ "learning_rate": 1.6910801068236015e-06,
1922
+ "loss": 0.3285,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 1.64,
1927
+ "learning_rate": 1.6451218858706374e-06,
1928
+ "loss": 0.332,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 1.64,
1933
+ "learning_rate": 1.599740768492286e-06,
1934
+ "loss": 0.3314,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 1.65,
1939
+ "learning_rate": 1.5549398893369216e-06,
1940
+ "loss": 0.3171,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 1.65,
1945
+ "learning_rate": 1.5107223429736273e-06,
1946
+ "loss": 0.3138,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 1.66,
1951
+ "learning_rate": 1.467091183678444e-06,
1952
+ "loss": 0.3464,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 1.66,
1957
+ "learning_rate": 1.424049425223405e-06,
1958
+ "loss": 0.3239,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 1.67,
1963
+ "learning_rate": 1.3816000406683604e-06,
1964
+ "loss": 0.3651,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 1.67,
1969
+ "learning_rate": 1.339745962155613e-06,
1970
+ "loss": 0.3333,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 1.68,
1975
+ "learning_rate": 1.2984900807073919e-06,
1976
+ "loss": 0.3037,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 1.68,
1981
+ "learning_rate": 1.2578352460261456e-06,
1982
+ "loss": 0.3098,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 1.69,
1987
+ "learning_rate": 1.2177842662977136e-06,
1988
+ "loss": 0.3431,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 1.69,
1993
+ "learning_rate": 1.1783399079973578e-06,
1994
+ "loss": 0.3466,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 1.7,
1999
+ "learning_rate": 1.1395048956986577e-06,
2000
+ "loss": 0.3573,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 1.7,
2005
+ "learning_rate": 1.1012819118853147e-06,
2006
+ "loss": 0.3155,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 1.71,
2011
+ "learning_rate": 1.0636735967658785e-06,
2012
+ "loss": 0.3185,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 1.71,
2017
+ "learning_rate": 1.026682548091361e-06,
2018
+ "loss": 0.355,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 1.72,
2023
+ "learning_rate": 9.903113209758098e-07,
2024
+ "loss": 0.3425,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 1.72,
2029
+ "learning_rate": 9.545624277198085e-07,
2030
+ "loss": 0.3329,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 1.73,
2035
+ "learning_rate": 9.194383376369509e-07,
2036
+ "loss": 0.3512,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 1.74,
2041
+ "learning_rate": 8.849414768832687e-07,
2042
+ "loss": 0.3399,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 1.74,
2047
+ "learning_rate": 8.510742282896545e-07,
2048
+ "loss": 0.3041,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 1.75,
2053
+ "learning_rate": 8.178389311972612e-07,
2054
+ "loss": 0.3213,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 1.75,
2059
+ "learning_rate": 7.852378812959227e-07,
2060
+ "loss": 0.3456,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 1.76,
2065
+ "learning_rate": 7.532733304655848e-07,
2066
+ "loss": 0.3546,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 1.76,
2071
+ "learning_rate": 7.219474866207465e-07,
2072
+ "loss": 0.313,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 1.77,
2077
+ "learning_rate": 6.912625135579587e-07,
2078
+ "loss": 0.3302,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 1.77,
2083
+ "learning_rate": 6.612205308063646e-07,
2084
+ "loss": 0.3214,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 1.78,
2089
+ "learning_rate": 6.318236134812917e-07,
2090
+ "loss": 0.3436,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 1.78,
2095
+ "learning_rate": 6.030737921409169e-07,
2096
+ "loss": 0.3569,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 1.79,
2101
+ "learning_rate": 5.749730526460073e-07,
2102
+ "loss": 0.3202,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 1.79,
2107
+ "learning_rate": 5.475233360227516e-07,
2108
+ "loss": 0.3313,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 1.8,
2113
+ "learning_rate": 5.207265383286831e-07,
2114
+ "loss": 0.3305,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 1.8,
2119
+ "learning_rate": 4.945845105217118e-07,
2120
+ "loss": 0.3337,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 1.81,
2125
+ "learning_rate": 4.6909905833226965e-07,
2126
+ "loss": 0.3286,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 1.81,
2131
+ "learning_rate": 4.4427194213859216e-07,
2132
+ "loss": 0.3051,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 1.82,
2137
+ "learning_rate": 4.2010487684511105e-07,
2138
+ "loss": 0.3574,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 1.82,
2143
+ "learning_rate": 3.965995317640026e-07,
2144
+ "loss": 0.3531,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 1.83,
2149
+ "learning_rate": 3.7375753049987974e-07,
2150
+ "loss": 0.3501,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 1.83,
2155
+ "learning_rate": 3.515804508376508e-07,
2156
+ "loss": 0.3483,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 1.84,
2161
+ "learning_rate": 3.3006982463352764e-07,
2162
+ "loss": 0.3303,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 1.84,
2167
+ "learning_rate": 3.0922713770922155e-07,
2168
+ "loss": 0.3181,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 1.85,
2173
+ "learning_rate": 2.8905382974930173e-07,
2174
+ "loss": 0.3199,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 1.85,
2179
+ "learning_rate": 2.6955129420176193e-07,
2180
+ "loss": 0.2989,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 1.86,
2185
+ "learning_rate": 2.507208781817638e-07,
2186
+ "loss": 0.3392,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 1.86,
2191
+ "learning_rate": 2.3256388237858806e-07,
2192
+ "loss": 0.3426,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 1.87,
2197
+ "learning_rate": 2.1508156096578748e-07,
2198
+ "loss": 0.3412,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 1.87,
2203
+ "learning_rate": 1.9827512151456175e-07,
2204
+ "loss": 0.338,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 1.88,
2209
+ "learning_rate": 1.82145724910342e-07,
2210
+ "loss": 0.3432,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 1.88,
2215
+ "learning_rate": 1.6669448527260602e-07,
2216
+ "loss": 0.3142,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 1.89,
2221
+ "learning_rate": 1.519224698779198e-07,
2222
+ "loss": 0.2942,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 1.89,
2227
+ "learning_rate": 1.3783069908621772e-07,
2228
+ "loss": 0.3565,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 1.9,
2233
+ "learning_rate": 1.2442014627032318e-07,
2234
+ "loss": 0.346,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 1.9,
2239
+ "learning_rate": 1.1169173774871478e-07,
2240
+ "loss": 0.3597,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 1.91,
2245
+ "learning_rate": 9.964635272153633e-08,
2246
+ "loss": 0.369,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 1.91,
2251
+ "learning_rate": 8.82848232098732e-08,
2252
+ "loss": 0.302,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 1.92,
2257
+ "learning_rate": 7.760793399827937e-08,
2258
+ "loss": 0.3438,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 1.92,
2263
+ "learning_rate": 6.761642258056977e-08,
2264
+ "loss": 0.3122,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 1.93,
2269
+ "learning_rate": 5.831097910887873e-08,
2270
+ "loss": 0.3243,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 1.93,
2275
+ "learning_rate": 4.9692246345985905e-08,
2276
+ "loss": 0.3313,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 1.94,
2281
+ "learning_rate": 4.176081962092182e-08,
2282
+ "loss": 0.3137,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 1.94,
2287
+ "learning_rate": 3.451724678784518e-08,
2288
+ "loss": 0.3736,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 1.95,
2293
+ "learning_rate": 2.796202818819871e-08,
2294
+ "loss": 0.3136,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 1.96,
2299
+ "learning_rate": 2.2095616616150117e-08,
2300
+ "loss": 0.3652,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 1.96,
2305
+ "learning_rate": 1.6918417287318245e-08,
2306
+ "loss": 0.3403,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 1.97,
2311
+ "learning_rate": 1.2430787810776556e-08,
2312
+ "loss": 0.3303,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 1.97,
2317
+ "learning_rate": 8.633038164358454e-09,
2318
+ "loss": 0.3345,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 1.98,
2323
+ "learning_rate": 5.525430673244403e-09,
2324
+ "loss": 0.3318,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 1.98,
2329
+ "learning_rate": 3.1081799918375454e-09,
2330
+ "loss": 0.3388,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 1.99,
2335
+ "learning_rate": 1.3814530889433298e-09,
2336
+ "loss": 0.3245,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 1.99,
2341
+ "learning_rate": 3.4536923623096353e-10,
2342
+ "loss": 0.3206,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 2.0,
2347
+ "learning_rate": 0.0,
2348
+ "loss": 0.3554,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 2.0,
2353
+ "step": 390,
2354
+ "total_flos": 2.582018135330652e+17,
2355
+ "train_loss": 0.4808387424701299,
2356
+ "train_runtime": 3317.3657,
2357
+ "train_samples_per_second": 30.144,
2358
+ "train_steps_per_second": 0.118
2359
+ }
2360
+ ],
2361
+ "logging_steps": 1.0,
2362
+ "max_steps": 390,
2363
+ "num_input_tokens_seen": 0,
2364
+ "num_train_epochs": 2,
2365
+ "save_steps": 2000,
2366
+ "total_flos": 2.582018135330652e+17,
2367
+ "train_batch_size": 4,
2368
+ "trial_name": null,
2369
+ "trial_params": null
2370
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5a6985597601299fa1be71c24bf87fd8c6737fc2f3bb2b6bcf651b1bac531e5
3
+ size 4984