Warvito commited on
Commit
42fe352
·
verified ·
1 Parent(s): c3abb0d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-to-video
3
+ ---
4
+ AnimateDiff is a method that allows you to create videos using pre-existing Stable Diffusion Text to Image models.
5
+
6
+ Converted https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_mm.ckpt to Huggingface Diffusers format
7
+ using Diffuser's convetion script (available https://github.com/huggingface/diffusers/blob/main/scripts/convert_animatediff_motion_module_to_diffusers.py)
8
+
9
+ The following example demonstrates how you can utilize the motion modules with an existing Stable Diffusion text to image model.
10
+
11
+
12
+ ```python
13
+ import torch
14
+ from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
15
+ from diffusers.utils import export_to_gif
16
+
17
+ # Load the motion adapter
18
+ adapter = MotionAdapter.from_pretrained("Warvito/animatediff-motion-adapter-v1-5-3")
19
+ # load SD 1.5 based finetuned model
20
+ model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
21
+ pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
22
+ scheduler = DDIMScheduler.from_pretrained(
23
+ model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
24
+ )
25
+ pipe.scheduler = scheduler
26
+
27
+ # enable memory savings
28
+ pipe.enable_vae_slicing()
29
+ pipe.enable_model_cpu_offload()
30
+
31
+ output = pipe(
32
+ prompt=(
33
+ "masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
34
+ "orange sky, warm lighting, fishing boats, ocean waves seagulls, "
35
+ "rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
36
+ "golden hour, coastal landscape, seaside scenery"
37
+ ),
38
+ negative_prompt="bad quality, worse quality",
39
+ num_frames=16,
40
+ guidance_scale=7.5,
41
+ num_inference_steps=25,
42
+ generator=torch.Generator("cpu").manual_seed(42),
43
+ )
44
+ frames = output.frames[0]
45
+ export_to_gif(frames, "animation.gif")
46
+ ```
47
+