File size: 4,727 Bytes
36f6450
 
 
 
 
 
b882398
 
 
 
 
 
 
 
 
 
 
36f6450
6de808b
36f6450
b882398
 
 
 
 
 
 
36f6450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b882398
 
 
 
 
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
 
 
 
 
 
 
 
 
 
 
 
 
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
36f6450
b882398
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
license: other
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- metaeval/reclor
- openbookqa
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- wenhu/TheoremQA
- TIGER-Lab/ScienceEval
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/uvfa4GVWrnd8SS6yBxRJZ.jpeg)

# 🔬 Einstein-7B

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on datasets related to science.

This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).

This model's training was sponsored by [sablo.ai](https://sablo.ai).

<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: sci-datasets/arc_challange_train_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_biology_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_chemistry_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_physics_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/openbookqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/reclor_science_alpaca.json
    ds_type: json
    type: alpaca
    
  - path: sci-datasets/scibench_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/scienceqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/theoremqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/tiger_scienceeval_alpaca.json
    ds_type: json
    type: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./science-mistral

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/science-mistral

# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10


saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# 📊 Datasets

Following datasets were used in this model:

- [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)

- [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)

- [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)

- [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)

- [openbookqa](https://huggingface.co/datasets/openbookqa)

- [reclor](https://huggingface.co/datasets/metaeval/reclor)

- [scibench](https://github.com/mandyyyyii/scibench)

- [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA)

- [TheoremQA](https://huggingface.co/datasets/wenhu/TheoremQA)

- [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval)

# 💬 Prompt Template

You can use this prompt template while using the model:

### Alpaca

```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
```

# 🤝 Acknowledgments

Thanks to Platypus for providing scripts to convert some of the datasets to Alpaca format: [Platypus/data_pipeline](https://github.com/arielnlee/Platypus/tree/main/data_pipeline)

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)