File size: 4,821 Bytes
36f6450 b882398 36f6450 6de808b 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 b882398 36f6450 adc3b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
license: other
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- allenai/ai2_arc
- camel-ai/physics
- camel-ai/chemistry
- camel-ai/biology
- metaeval/reclor
- openbookqa
- mandyyyyii/scibench
- derek-thomas/ScienceQA
- wenhu/TheoremQA
- TIGER-Lab/ScienceEval
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/uvfa4GVWrnd8SS6yBxRJZ.jpeg)
# 🔬 Einstein-7B
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on datasets related to science.
This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
This model's training was sponsored by [sablo.ai](https://sablo.ai).
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: sci-datasets/arc_challange_train_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/camelai_biology_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/camelai_chemistry_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/camelai_physics_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/openbookqa_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/reclor_science_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/scibench_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/scienceqa_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/theoremqa_alpaca.json
ds_type: json
type: alpaca
- path: sci-datasets/tiger_scienceeval_alpaca.json
ds_type: json
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./science-mistral
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/science-mistral
# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# 📊 Datasets
Following datasets were used in this model:
- [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part)
- [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics)
- [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry)
- [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology)
- [openbookqa](https://huggingface.co/datasets/openbookqa)
- [reclor](https://huggingface.co/datasets/metaeval/reclor)
- [scibench](https://github.com/mandyyyyii/scibench)
- [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA)
- [TheoremQA](https://huggingface.co/datasets/wenhu/TheoremQA)
- [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval)
# 💬 Prompt Template
You can use this prompt template while using the model:
### Alpaca
```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:
```
# 🤝 Acknowledgments
Thanks to Platypus for providing scripts to convert some of the datasets to Alpaca format: [Platypus/data_pipeline](https://github.com/arielnlee/Platypus/tree/main/data_pipeline)
Thanks to all the dataset authors mentioned in the datasets section.
Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
If you would like to support me:
[☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi) |