Upload folder using huggingface_hub
Browse files- global_step428/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step428/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step428/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step428/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step428/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step428/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step428/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step428/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step428/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step428/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step428/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step428/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- global_step428/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- global_step428/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- global_step428/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- global_step428/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +2629 -0
- zero_to_fp32.py +592 -0
global_step428/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31eb677de80948991321bfe446bcdaf4165d3f8c9efa96cfadccfaf3a07e6432
|
3 |
+
size 5435499827
|
global_step428/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09e4495311047938552b63e0739ae4a551323c70509aed4b806aae92544537a7
|
3 |
+
size 5435499827
|
global_step428/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e1e42c3abfc5e8f3bf1af140fef44ff8f8441a9256840b045d424c01026ce1e
|
3 |
+
size 5435499827
|
global_step428/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:398bfa2896865cf30cef24ec6b68f47976d7f16cb3df673efceb7804d4b93241
|
3 |
+
size 5435499827
|
global_step428/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a62bcb45fde6ec6327735c7a280ac3ce1f417f8924c8774a8c82a17cfbf4c295
|
3 |
+
size 5435499827
|
global_step428/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb1d3d30b3e766144ee852f023bd74030024ab52c9f32771cdef96fb92ea360a
|
3 |
+
size 5435499827
|
global_step428/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:874cb020cb85f973bcb6aabf19b131ea5f4119dfb72f80578d61c90b95b95b8f
|
3 |
+
size 5435499827
|
global_step428/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68f1d3311e2ce3605022c06ddc3064dd9e31f60d59b8cef8e11e6d4ffb6c19c7
|
3 |
+
size 5435499827
|
global_step428/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57e8c2eb8c8299c2c958127742fbf228e53106a6568c4971b8afabbd0109ff90
|
3 |
+
size 153829
|
global_step428/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e282c8dfa4e2bc4ca41f74c0855b60c0b95c8b57349ed0f767b0ac93c6d90e4
|
3 |
+
size 153829
|
global_step428/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a05bcb052dcc69a98918a82611f0e1e96657c85e106f480eda0074811399d0ca
|
3 |
+
size 153829
|
global_step428/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55815a63565a06e023966b6a11030d06cfdc86e64fac8c811f57b00ab0e1e847
|
3 |
+
size 153829
|
global_step428/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43ea8ade0f653c47a1ac50680612d8e5218345ab1b86cb35384d76d563dd75cc
|
3 |
+
size 153829
|
global_step428/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9650144687908dce67d9631417bd0ee2e129d6fa67ed87825da1ef4167112639
|
3 |
+
size 153829
|
global_step428/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fb9e75a82b054c216c566b9165d02270f6da8be51ccc5c3ec334b0c2004d830
|
3 |
+
size 153829
|
global_step428/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47f5259391522659ec37fb679a3619fb26f04f6a1908753f5d9f85e2dda46e3f
|
3 |
+
size 153829
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step428
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1bec598899f9d59e70c1b4705ce420a1e0a670957b6c8153a589880068ae5a4
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60d2348aae518f4c44693db9c9b4b3a3299c556e7f0a86c188b2e4c3e364a7c
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffe5a79d3bcb4ce033de360bc765e616316e3562aba25887cd85c4adbb935abf
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9a9d1f6e22677721841890e6a27855857e6840137650d609eb8e4ac13b71d29
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcac4ff84388a6a4fe3bcae6207c68b2ee5528fb3b6de8cc3588fe1975462aa5
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33fce3cdf5c1b8a8a291e0c73b384e3ad5252640e21e942b44b26b8b0928ffa9
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:919e675f3bcaf4f3c8ba35cd8debf85aec3bbc3c8e5019b74431e0a314e4d37a
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bf6479ce82b88efc6a72a8ee512162b3d0ecab972817296d38ab9c448bb8d96
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee8c731be5df723d260a08657a32a14cf7657c00593a1a4bb80bc7c00b297026
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,2629 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.5059249997138977,
|
3 |
+
"best_model_checkpoint": "./Einstein-v3-model/checkpoint-428",
|
4 |
+
"epoch": 0.9994162288382954,
|
5 |
+
"eval_steps": 107,
|
6 |
+
"global_step": 428,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 5.000000000000001e-07,
|
14 |
+
"loss": 1.038,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"eval_loss": 1.125040888786316,
|
20 |
+
"eval_runtime": 969.9573,
|
21 |
+
"eval_samples_per_second": 1.161,
|
22 |
+
"eval_steps_per_second": 0.145,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"learning_rate": 1.0000000000000002e-06,
|
28 |
+
"loss": 1.0692,
|
29 |
+
"step": 2
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.01,
|
33 |
+
"learning_rate": 1.5e-06,
|
34 |
+
"loss": 1.0161,
|
35 |
+
"step": 3
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"epoch": 0.01,
|
39 |
+
"learning_rate": 2.0000000000000003e-06,
|
40 |
+
"loss": 0.9363,
|
41 |
+
"step": 4
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.01,
|
45 |
+
"learning_rate": 2.5e-06,
|
46 |
+
"loss": 0.8647,
|
47 |
+
"step": 5
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 0.01,
|
51 |
+
"learning_rate": 3e-06,
|
52 |
+
"loss": 0.9888,
|
53 |
+
"step": 6
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 0.02,
|
57 |
+
"learning_rate": 3.5e-06,
|
58 |
+
"loss": 0.8645,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.02,
|
63 |
+
"learning_rate": 4.000000000000001e-06,
|
64 |
+
"loss": 0.763,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.02,
|
69 |
+
"learning_rate": 4.5e-06,
|
70 |
+
"loss": 0.8058,
|
71 |
+
"step": 9
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 0.02,
|
75 |
+
"learning_rate": 5e-06,
|
76 |
+
"loss": 0.789,
|
77 |
+
"step": 10
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 0.03,
|
81 |
+
"learning_rate": 4.9999293917983325e-06,
|
82 |
+
"loss": 0.798,
|
83 |
+
"step": 11
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.03,
|
87 |
+
"learning_rate": 4.999717571181742e-06,
|
88 |
+
"loss": 0.7411,
|
89 |
+
"step": 12
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.03,
|
93 |
+
"learning_rate": 4.9993645501152485e-06,
|
94 |
+
"loss": 0.748,
|
95 |
+
"step": 13
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.03,
|
99 |
+
"learning_rate": 4.998870348539797e-06,
|
100 |
+
"loss": 0.7312,
|
101 |
+
"step": 14
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.04,
|
105 |
+
"learning_rate": 4.998234994371135e-06,
|
106 |
+
"loss": 0.7179,
|
107 |
+
"step": 15
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.04,
|
111 |
+
"learning_rate": 4.997458523498236e-06,
|
112 |
+
"loss": 0.7158,
|
113 |
+
"step": 16
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.04,
|
117 |
+
"learning_rate": 4.996540979781269e-06,
|
118 |
+
"loss": 0.6975,
|
119 |
+
"step": 17
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.04,
|
123 |
+
"learning_rate": 4.995482415049123e-06,
|
124 |
+
"loss": 0.6809,
|
125 |
+
"step": 18
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 0.04,
|
129 |
+
"learning_rate": 4.99428288909648e-06,
|
130 |
+
"loss": 0.6709,
|
131 |
+
"step": 19
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 0.05,
|
135 |
+
"learning_rate": 4.992942469680437e-06,
|
136 |
+
"loss": 0.6778,
|
137 |
+
"step": 20
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.05,
|
141 |
+
"learning_rate": 4.991461232516675e-06,
|
142 |
+
"loss": 0.69,
|
143 |
+
"step": 21
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.05,
|
147 |
+
"learning_rate": 4.989839261275191e-06,
|
148 |
+
"loss": 0.6518,
|
149 |
+
"step": 22
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.05,
|
153 |
+
"learning_rate": 4.988076647575562e-06,
|
154 |
+
"loss": 0.6712,
|
155 |
+
"step": 23
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.06,
|
159 |
+
"learning_rate": 4.986173490981773e-06,
|
160 |
+
"loss": 0.6429,
|
161 |
+
"step": 24
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.06,
|
165 |
+
"learning_rate": 4.984129898996599e-06,
|
166 |
+
"loss": 0.682,
|
167 |
+
"step": 25
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 0.06,
|
171 |
+
"learning_rate": 4.981945987055521e-06,
|
172 |
+
"loss": 0.6661,
|
173 |
+
"step": 26
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.06,
|
177 |
+
"learning_rate": 4.979621878520217e-06,
|
178 |
+
"loss": 0.6287,
|
179 |
+
"step": 27
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.07,
|
183 |
+
"learning_rate": 4.977157704671585e-06,
|
184 |
+
"loss": 0.6642,
|
185 |
+
"step": 28
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.07,
|
189 |
+
"learning_rate": 4.974553604702332e-06,
|
190 |
+
"loss": 0.6644,
|
191 |
+
"step": 29
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.07,
|
195 |
+
"learning_rate": 4.971809725709112e-06,
|
196 |
+
"loss": 0.6453,
|
197 |
+
"step": 30
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 0.07,
|
201 |
+
"learning_rate": 4.968926222684213e-06,
|
202 |
+
"loss": 0.6199,
|
203 |
+
"step": 31
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.07,
|
207 |
+
"learning_rate": 4.965903258506806e-06,
|
208 |
+
"loss": 0.6038,
|
209 |
+
"step": 32
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.08,
|
213 |
+
"learning_rate": 4.9627410039337426e-06,
|
214 |
+
"loss": 0.6493,
|
215 |
+
"step": 33
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.08,
|
219 |
+
"learning_rate": 4.959439637589909e-06,
|
220 |
+
"loss": 0.6304,
|
221 |
+
"step": 34
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.08,
|
225 |
+
"learning_rate": 4.9559993459581375e-06,
|
226 |
+
"loss": 0.6692,
|
227 |
+
"step": 35
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.08,
|
231 |
+
"learning_rate": 4.952420323368673e-06,
|
232 |
+
"loss": 0.5978,
|
233 |
+
"step": 36
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.09,
|
237 |
+
"learning_rate": 4.948702771988195e-06,
|
238 |
+
"loss": 0.6318,
|
239 |
+
"step": 37
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.09,
|
243 |
+
"learning_rate": 4.944846901808397e-06,
|
244 |
+
"loss": 0.5838,
|
245 |
+
"step": 38
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.09,
|
249 |
+
"learning_rate": 4.940852930634126e-06,
|
250 |
+
"loss": 0.5884,
|
251 |
+
"step": 39
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.09,
|
255 |
+
"learning_rate": 4.936721084071079e-06,
|
256 |
+
"loss": 0.5955,
|
257 |
+
"step": 40
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.1,
|
261 |
+
"learning_rate": 4.932451595513063e-06,
|
262 |
+
"loss": 0.5704,
|
263 |
+
"step": 41
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.1,
|
267 |
+
"learning_rate": 4.928044706128803e-06,
|
268 |
+
"loss": 0.5711,
|
269 |
+
"step": 42
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.1,
|
273 |
+
"learning_rate": 4.923500664848327e-06,
|
274 |
+
"loss": 0.5886,
|
275 |
+
"step": 43
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.1,
|
279 |
+
"learning_rate": 4.918819728348901e-06,
|
280 |
+
"loss": 0.5802,
|
281 |
+
"step": 44
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.11,
|
285 |
+
"learning_rate": 4.9140021610405335e-06,
|
286 |
+
"loss": 0.6221,
|
287 |
+
"step": 45
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.11,
|
291 |
+
"learning_rate": 4.909048235051033e-06,
|
292 |
+
"loss": 0.5859,
|
293 |
+
"step": 46
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.11,
|
297 |
+
"learning_rate": 4.903958230210647e-06,
|
298 |
+
"loss": 0.5906,
|
299 |
+
"step": 47
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.11,
|
303 |
+
"learning_rate": 4.8987324340362445e-06,
|
304 |
+
"loss": 0.586,
|
305 |
+
"step": 48
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.11,
|
309 |
+
"learning_rate": 4.89337114171508e-06,
|
310 |
+
"loss": 0.5782,
|
311 |
+
"step": 49
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.12,
|
315 |
+
"learning_rate": 4.887874656088124e-06,
|
316 |
+
"loss": 0.6341,
|
317 |
+
"step": 50
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.12,
|
321 |
+
"learning_rate": 4.882243287632947e-06,
|
322 |
+
"loss": 0.5753,
|
323 |
+
"step": 51
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.12,
|
327 |
+
"learning_rate": 4.8764773544461895e-06,
|
328 |
+
"loss": 0.5896,
|
329 |
+
"step": 52
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.12,
|
333 |
+
"learning_rate": 4.8705771822255895e-06,
|
334 |
+
"loss": 0.567,
|
335 |
+
"step": 53
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.13,
|
339 |
+
"learning_rate": 4.864543104251587e-06,
|
340 |
+
"loss": 0.5943,
|
341 |
+
"step": 54
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.13,
|
345 |
+
"learning_rate": 4.858375461368499e-06,
|
346 |
+
"loss": 0.5942,
|
347 |
+
"step": 55
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.13,
|
351 |
+
"learning_rate": 4.852074601965261e-06,
|
352 |
+
"loss": 0.5639,
|
353 |
+
"step": 56
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.13,
|
357 |
+
"learning_rate": 4.845640881955757e-06,
|
358 |
+
"loss": 0.6058,
|
359 |
+
"step": 57
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.14,
|
363 |
+
"learning_rate": 4.839074664758705e-06,
|
364 |
+
"loss": 0.5695,
|
365 |
+
"step": 58
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.14,
|
369 |
+
"learning_rate": 4.832376321277136e-06,
|
370 |
+
"loss": 0.6233,
|
371 |
+
"step": 59
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.14,
|
375 |
+
"learning_rate": 4.825546229877439e-06,
|
376 |
+
"loss": 0.5617,
|
377 |
+
"step": 60
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.14,
|
381 |
+
"learning_rate": 4.818584776367992e-06,
|
382 |
+
"loss": 0.586,
|
383 |
+
"step": 61
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.14,
|
387 |
+
"learning_rate": 4.811492353977366e-06,
|
388 |
+
"loss": 0.5609,
|
389 |
+
"step": 62
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.15,
|
393 |
+
"learning_rate": 4.804269363332112e-06,
|
394 |
+
"loss": 0.5371,
|
395 |
+
"step": 63
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.15,
|
399 |
+
"learning_rate": 4.7969162124341354e-06,
|
400 |
+
"loss": 0.5585,
|
401 |
+
"step": 64
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.15,
|
405 |
+
"learning_rate": 4.789433316637644e-06,
|
406 |
+
"loss": 0.5548,
|
407 |
+
"step": 65
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.15,
|
411 |
+
"learning_rate": 4.781821098625691e-06,
|
412 |
+
"loss": 0.5613,
|
413 |
+
"step": 66
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 0.16,
|
417 |
+
"learning_rate": 4.7740799883862966e-06,
|
418 |
+
"loss": 0.5483,
|
419 |
+
"step": 67
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.16,
|
423 |
+
"learning_rate": 4.766210423188158e-06,
|
424 |
+
"loss": 0.5892,
|
425 |
+
"step": 68
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.16,
|
429 |
+
"learning_rate": 4.758212847555953e-06,
|
430 |
+
"loss": 0.5813,
|
431 |
+
"step": 69
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.16,
|
435 |
+
"learning_rate": 4.750087713245227e-06,
|
436 |
+
"loss": 0.552,
|
437 |
+
"step": 70
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.17,
|
441 |
+
"learning_rate": 4.74183547921688e-06,
|
442 |
+
"loss": 0.5478,
|
443 |
+
"step": 71
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.17,
|
447 |
+
"learning_rate": 4.733456611611233e-06,
|
448 |
+
"loss": 0.5648,
|
449 |
+
"step": 72
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.17,
|
453 |
+
"learning_rate": 4.7249515837217075e-06,
|
454 |
+
"loss": 0.5717,
|
455 |
+
"step": 73
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 0.17,
|
459 |
+
"learning_rate": 4.716320875968081e-06,
|
460 |
+
"loss": 0.5916,
|
461 |
+
"step": 74
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.18,
|
465 |
+
"learning_rate": 4.707564975869357e-06,
|
466 |
+
"loss": 0.5562,
|
467 |
+
"step": 75
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.18,
|
471 |
+
"learning_rate": 4.698684378016223e-06,
|
472 |
+
"loss": 0.5347,
|
473 |
+
"step": 76
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 0.18,
|
477 |
+
"learning_rate": 4.6896795840431155e-06,
|
478 |
+
"loss": 0.5595,
|
479 |
+
"step": 77
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.18,
|
483 |
+
"learning_rate": 4.680551102599881e-06,
|
484 |
+
"loss": 0.564,
|
485 |
+
"step": 78
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.18,
|
489 |
+
"learning_rate": 4.671299449323045e-06,
|
490 |
+
"loss": 0.5646,
|
491 |
+
"step": 79
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.19,
|
495 |
+
"learning_rate": 4.66192514680669e-06,
|
496 |
+
"loss": 0.5667,
|
497 |
+
"step": 80
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.19,
|
501 |
+
"learning_rate": 4.652428724572929e-06,
|
502 |
+
"loss": 0.5726,
|
503 |
+
"step": 81
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.19,
|
507 |
+
"learning_rate": 4.642810719041999e-06,
|
508 |
+
"loss": 0.544,
|
509 |
+
"step": 82
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.19,
|
513 |
+
"learning_rate": 4.63307167350196e-06,
|
514 |
+
"loss": 0.5673,
|
515 |
+
"step": 83
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.2,
|
519 |
+
"learning_rate": 4.623212138078004e-06,
|
520 |
+
"loss": 0.5743,
|
521 |
+
"step": 84
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.2,
|
525 |
+
"learning_rate": 4.613232669701384e-06,
|
526 |
+
"loss": 0.5605,
|
527 |
+
"step": 85
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.2,
|
531 |
+
"learning_rate": 4.603133832077953e-06,
|
532 |
+
"loss": 0.5754,
|
533 |
+
"step": 86
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.2,
|
537 |
+
"learning_rate": 4.592916195656322e-06,
|
538 |
+
"loss": 0.5578,
|
539 |
+
"step": 87
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.21,
|
543 |
+
"learning_rate": 4.582580337595636e-06,
|
544 |
+
"loss": 0.5261,
|
545 |
+
"step": 88
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.21,
|
549 |
+
"learning_rate": 4.572126841732977e-06,
|
550 |
+
"loss": 0.5864,
|
551 |
+
"step": 89
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.21,
|
555 |
+
"learning_rate": 4.561556298550379e-06,
|
556 |
+
"loss": 0.5388,
|
557 |
+
"step": 90
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.21,
|
561 |
+
"learning_rate": 4.550869305141478e-06,
|
562 |
+
"loss": 0.5662,
|
563 |
+
"step": 91
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.21,
|
567 |
+
"learning_rate": 4.5400664651777835e-06,
|
568 |
+
"loss": 0.5359,
|
569 |
+
"step": 92
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.22,
|
573 |
+
"learning_rate": 4.529148388874577e-06,
|
574 |
+
"loss": 0.5485,
|
575 |
+
"step": 93
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.22,
|
579 |
+
"learning_rate": 4.518115692956445e-06,
|
580 |
+
"loss": 0.5715,
|
581 |
+
"step": 94
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 0.22,
|
585 |
+
"learning_rate": 4.506969000622443e-06,
|
586 |
+
"loss": 0.5412,
|
587 |
+
"step": 95
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.22,
|
591 |
+
"learning_rate": 4.49570894151089e-06,
|
592 |
+
"loss": 0.5475,
|
593 |
+
"step": 96
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.23,
|
597 |
+
"learning_rate": 4.484336151663807e-06,
|
598 |
+
"loss": 0.5443,
|
599 |
+
"step": 97
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.23,
|
603 |
+
"learning_rate": 4.472851273490985e-06,
|
604 |
+
"loss": 0.5519,
|
605 |
+
"step": 98
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.23,
|
609 |
+
"learning_rate": 4.4612549557336975e-06,
|
610 |
+
"loss": 0.5293,
|
611 |
+
"step": 99
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.23,
|
615 |
+
"learning_rate": 4.449547853428061e-06,
|
616 |
+
"loss": 0.5545,
|
617 |
+
"step": 100
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.24,
|
621 |
+
"learning_rate": 4.437730627868028e-06,
|
622 |
+
"loss": 0.5361,
|
623 |
+
"step": 101
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 0.24,
|
627 |
+
"learning_rate": 4.425803946568033e-06,
|
628 |
+
"loss": 0.547,
|
629 |
+
"step": 102
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.24,
|
633 |
+
"learning_rate": 4.413768483225292e-06,
|
634 |
+
"loss": 0.532,
|
635 |
+
"step": 103
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.24,
|
639 |
+
"learning_rate": 4.401624917681743e-06,
|
640 |
+
"loss": 0.5515,
|
641 |
+
"step": 104
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.25,
|
645 |
+
"learning_rate": 4.3893739358856465e-06,
|
646 |
+
"loss": 0.5424,
|
647 |
+
"step": 105
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.25,
|
651 |
+
"learning_rate": 4.377016229852836e-06,
|
652 |
+
"loss": 0.5217,
|
653 |
+
"step": 106
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.25,
|
657 |
+
"learning_rate": 4.364552497627632e-06,
|
658 |
+
"loss": 0.5254,
|
659 |
+
"step": 107
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 0.25,
|
663 |
+
"eval_loss": 0.5753679871559143,
|
664 |
+
"eval_runtime": 972.8304,
|
665 |
+
"eval_samples_per_second": 1.157,
|
666 |
+
"eval_steps_per_second": 0.145,
|
667 |
+
"step": 107
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.25,
|
671 |
+
"learning_rate": 4.3519834432434095e-06,
|
672 |
+
"loss": 0.5599,
|
673 |
+
"step": 108
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.25,
|
677 |
+
"learning_rate": 4.33930977668283e-06,
|
678 |
+
"loss": 0.5479,
|
679 |
+
"step": 109
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 0.26,
|
683 |
+
"learning_rate": 4.326532213837735e-06,
|
684 |
+
"loss": 0.582,
|
685 |
+
"step": 110
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.26,
|
689 |
+
"learning_rate": 4.3136514764687155e-06,
|
690 |
+
"loss": 0.5545,
|
691 |
+
"step": 111
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.26,
|
695 |
+
"learning_rate": 4.300668292164329e-06,
|
696 |
+
"loss": 0.5487,
|
697 |
+
"step": 112
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.26,
|
701 |
+
"learning_rate": 4.287583394300016e-06,
|
702 |
+
"loss": 0.5644,
|
703 |
+
"step": 113
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.27,
|
707 |
+
"learning_rate": 4.274397521996658e-06,
|
708 |
+
"loss": 0.5358,
|
709 |
+
"step": 114
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.27,
|
713 |
+
"learning_rate": 4.261111420078844e-06,
|
714 |
+
"loss": 0.5425,
|
715 |
+
"step": 115
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.27,
|
719 |
+
"learning_rate": 4.247725839032781e-06,
|
720 |
+
"loss": 0.5211,
|
721 |
+
"step": 116
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.27,
|
725 |
+
"learning_rate": 4.234241534963916e-06,
|
726 |
+
"loss": 0.5663,
|
727 |
+
"step": 117
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.28,
|
731 |
+
"learning_rate": 4.220659269554217e-06,
|
732 |
+
"loss": 0.5382,
|
733 |
+
"step": 118
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.28,
|
737 |
+
"learning_rate": 4.206979810019153e-06,
|
738 |
+
"loss": 0.554,
|
739 |
+
"step": 119
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.28,
|
743 |
+
"learning_rate": 4.1932039290643534e-06,
|
744 |
+
"loss": 0.528,
|
745 |
+
"step": 120
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.28,
|
749 |
+
"learning_rate": 4.179332404841963e-06,
|
750 |
+
"loss": 0.5146,
|
751 |
+
"step": 121
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.28,
|
755 |
+
"learning_rate": 4.1653660209066835e-06,
|
756 |
+
"loss": 0.5608,
|
757 |
+
"step": 122
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 0.29,
|
761 |
+
"learning_rate": 4.151305566171521e-06,
|
762 |
+
"loss": 0.5573,
|
763 |
+
"step": 123
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 0.29,
|
767 |
+
"learning_rate": 4.137151834863213e-06,
|
768 |
+
"loss": 0.5345,
|
769 |
+
"step": 124
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.29,
|
773 |
+
"learning_rate": 4.122905626477371e-06,
|
774 |
+
"loss": 0.5434,
|
775 |
+
"step": 125
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.29,
|
779 |
+
"learning_rate": 4.108567745733318e-06,
|
780 |
+
"loss": 0.5685,
|
781 |
+
"step": 126
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.3,
|
785 |
+
"learning_rate": 4.094139002528635e-06,
|
786 |
+
"loss": 0.5442,
|
787 |
+
"step": 127
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.3,
|
791 |
+
"learning_rate": 4.07962021189341e-06,
|
792 |
+
"loss": 0.4957,
|
793 |
+
"step": 128
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.3,
|
797 |
+
"learning_rate": 4.065012193944201e-06,
|
798 |
+
"loss": 0.5833,
|
799 |
+
"step": 129
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"epoch": 0.3,
|
803 |
+
"learning_rate": 4.050315773837708e-06,
|
804 |
+
"loss": 0.5178,
|
805 |
+
"step": 130
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 0.31,
|
809 |
+
"learning_rate": 4.0355317817241705e-06,
|
810 |
+
"loss": 0.553,
|
811 |
+
"step": 131
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 0.31,
|
815 |
+
"learning_rate": 4.020661052700462e-06,
|
816 |
+
"loss": 0.5466,
|
817 |
+
"step": 132
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.31,
|
821 |
+
"learning_rate": 4.00570442676293e-06,
|
822 |
+
"loss": 0.5412,
|
823 |
+
"step": 133
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.31,
|
827 |
+
"learning_rate": 3.990662748759946e-06,
|
828 |
+
"loss": 0.5573,
|
829 |
+
"step": 134
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.32,
|
833 |
+
"learning_rate": 3.975536868344174e-06,
|
834 |
+
"loss": 0.5593,
|
835 |
+
"step": 135
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.32,
|
839 |
+
"learning_rate": 3.9603276399245864e-06,
|
840 |
+
"loss": 0.5251,
|
841 |
+
"step": 136
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 0.32,
|
845 |
+
"learning_rate": 3.945035922618198e-06,
|
846 |
+
"loss": 0.5341,
|
847 |
+
"step": 137
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 0.32,
|
851 |
+
"learning_rate": 3.929662580201536e-06,
|
852 |
+
"loss": 0.5267,
|
853 |
+
"step": 138
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 0.32,
|
857 |
+
"learning_rate": 3.91420848106185e-06,
|
858 |
+
"loss": 0.5161,
|
859 |
+
"step": 139
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.33,
|
863 |
+
"learning_rate": 3.898674498148058e-06,
|
864 |
+
"loss": 0.5403,
|
865 |
+
"step": 140
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.33,
|
869 |
+
"learning_rate": 3.883061508921439e-06,
|
870 |
+
"loss": 0.536,
|
871 |
+
"step": 141
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.33,
|
875 |
+
"learning_rate": 3.8673703953060685e-06,
|
876 |
+
"loss": 0.5374,
|
877 |
+
"step": 142
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.33,
|
881 |
+
"learning_rate": 3.8516020436389945e-06,
|
882 |
+
"loss": 0.4947,
|
883 |
+
"step": 143
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 0.34,
|
887 |
+
"learning_rate": 3.835757344620183e-06,
|
888 |
+
"loss": 0.5328,
|
889 |
+
"step": 144
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.34,
|
893 |
+
"learning_rate": 3.819837193262197e-06,
|
894 |
+
"loss": 0.5306,
|
895 |
+
"step": 145
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 0.34,
|
899 |
+
"learning_rate": 3.803842488839642e-06,
|
900 |
+
"loss": 0.5334,
|
901 |
+
"step": 146
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 0.34,
|
905 |
+
"learning_rate": 3.7877741348383703e-06,
|
906 |
+
"loss": 0.5238,
|
907 |
+
"step": 147
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.35,
|
911 |
+
"learning_rate": 3.7716330389044463e-06,
|
912 |
+
"loss": 0.5396,
|
913 |
+
"step": 148
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.35,
|
917 |
+
"learning_rate": 3.7554201127928747e-06,
|
918 |
+
"loss": 0.5121,
|
919 |
+
"step": 149
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.35,
|
923 |
+
"learning_rate": 3.739136272316102e-06,
|
924 |
+
"loss": 0.5662,
|
925 |
+
"step": 150
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 0.35,
|
929 |
+
"learning_rate": 3.72278243729228e-06,
|
930 |
+
"loss": 0.4901,
|
931 |
+
"step": 151
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 0.35,
|
935 |
+
"learning_rate": 3.706359531493316e-06,
|
936 |
+
"loss": 0.4966,
|
937 |
+
"step": 152
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"epoch": 0.36,
|
941 |
+
"learning_rate": 3.6898684825926845e-06,
|
942 |
+
"loss": 0.5597,
|
943 |
+
"step": 153
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 0.36,
|
947 |
+
"learning_rate": 3.6733102221130303e-06,
|
948 |
+
"loss": 0.5164,
|
949 |
+
"step": 154
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.36,
|
953 |
+
"learning_rate": 3.656685685373552e-06,
|
954 |
+
"loss": 0.5555,
|
955 |
+
"step": 155
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.36,
|
959 |
+
"learning_rate": 3.6399958114371597e-06,
|
960 |
+
"loss": 0.5309,
|
961 |
+
"step": 156
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.37,
|
965 |
+
"learning_rate": 3.623241543057445e-06,
|
966 |
+
"loss": 0.5468,
|
967 |
+
"step": 157
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 0.37,
|
971 |
+
"learning_rate": 3.606423826625414e-06,
|
972 |
+
"loss": 0.5183,
|
973 |
+
"step": 158
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 0.37,
|
977 |
+
"learning_rate": 3.5895436121160388e-06,
|
978 |
+
"loss": 0.5361,
|
979 |
+
"step": 159
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.37,
|
983 |
+
"learning_rate": 3.5726018530345913e-06,
|
984 |
+
"loss": 0.5343,
|
985 |
+
"step": 160
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.38,
|
989 |
+
"learning_rate": 3.5555995063627842e-06,
|
990 |
+
"loss": 0.5548,
|
991 |
+
"step": 161
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.38,
|
995 |
+
"learning_rate": 3.5385375325047167e-06,
|
996 |
+
"loss": 0.5728,
|
997 |
+
"step": 162
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.38,
|
1001 |
+
"learning_rate": 3.5214168952326205e-06,
|
1002 |
+
"loss": 0.5234,
|
1003 |
+
"step": 163
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.38,
|
1007 |
+
"learning_rate": 3.5042385616324243e-06,
|
1008 |
+
"loss": 0.5047,
|
1009 |
+
"step": 164
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.39,
|
1013 |
+
"learning_rate": 3.4870035020491216e-06,
|
1014 |
+
"loss": 0.5179,
|
1015 |
+
"step": 165
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 0.39,
|
1019 |
+
"learning_rate": 3.469712690031962e-06,
|
1020 |
+
"loss": 0.5013,
|
1021 |
+
"step": 166
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 0.39,
|
1025 |
+
"learning_rate": 3.4523671022794612e-06,
|
1026 |
+
"loss": 0.5113,
|
1027 |
+
"step": 167
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 0.39,
|
1031 |
+
"learning_rate": 3.4349677185842246e-06,
|
1032 |
+
"loss": 0.5694,
|
1033 |
+
"step": 168
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.39,
|
1037 |
+
"learning_rate": 3.4175155217776057e-06,
|
1038 |
+
"loss": 0.4965,
|
1039 |
+
"step": 169
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.4,
|
1043 |
+
"learning_rate": 3.4000114976741905e-06,
|
1044 |
+
"loss": 0.5475,
|
1045 |
+
"step": 170
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.4,
|
1049 |
+
"learning_rate": 3.38245663501611e-06,
|
1050 |
+
"loss": 0.5014,
|
1051 |
+
"step": 171
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 0.4,
|
1055 |
+
"learning_rate": 3.3648519254171906e-06,
|
1056 |
+
"loss": 0.5079,
|
1057 |
+
"step": 172
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 0.4,
|
1061 |
+
"learning_rate": 3.3471983633069414e-06,
|
1062 |
+
"loss": 0.5222,
|
1063 |
+
"step": 173
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 0.41,
|
1067 |
+
"learning_rate": 3.32949694587438e-06,
|
1068 |
+
"loss": 0.5039,
|
1069 |
+
"step": 174
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.41,
|
1073 |
+
"learning_rate": 3.3117486730117092e-06,
|
1074 |
+
"loss": 0.5067,
|
1075 |
+
"step": 175
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.41,
|
1079 |
+
"learning_rate": 3.2939545472578314e-06,
|
1080 |
+
"loss": 0.5575,
|
1081 |
+
"step": 176
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.41,
|
1085 |
+
"learning_rate": 3.276115573741724e-06,
|
1086 |
+
"loss": 0.5155,
|
1087 |
+
"step": 177
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.42,
|
1091 |
+
"learning_rate": 3.2582327601256567e-06,
|
1092 |
+
"loss": 0.4915,
|
1093 |
+
"step": 178
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"epoch": 0.42,
|
1097 |
+
"learning_rate": 3.240307116548279e-06,
|
1098 |
+
"loss": 0.5415,
|
1099 |
+
"step": 179
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 0.42,
|
1103 |
+
"learning_rate": 3.222339655567556e-06,
|
1104 |
+
"loss": 0.5326,
|
1105 |
+
"step": 180
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 0.42,
|
1109 |
+
"learning_rate": 3.2043313921035747e-06,
|
1110 |
+
"loss": 0.5921,
|
1111 |
+
"step": 181
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.42,
|
1115 |
+
"learning_rate": 3.1862833433812137e-06,
|
1116 |
+
"loss": 0.5318,
|
1117 |
+
"step": 182
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.43,
|
1121 |
+
"learning_rate": 3.1681965288726825e-06,
|
1122 |
+
"loss": 0.5151,
|
1123 |
+
"step": 183
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.43,
|
1127 |
+
"learning_rate": 3.1500719702399406e-06,
|
1128 |
+
"loss": 0.5281,
|
1129 |
+
"step": 184
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.43,
|
1133 |
+
"learning_rate": 3.1319106912769797e-06,
|
1134 |
+
"loss": 0.5046,
|
1135 |
+
"step": 185
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 0.43,
|
1139 |
+
"learning_rate": 3.1137137178519983e-06,
|
1140 |
+
"loss": 0.5022,
|
1141 |
+
"step": 186
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 0.44,
|
1145 |
+
"learning_rate": 3.0954820778494516e-06,
|
1146 |
+
"loss": 0.5835,
|
1147 |
+
"step": 187
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"epoch": 0.44,
|
1151 |
+
"learning_rate": 3.0772168011119894e-06,
|
1152 |
+
"loss": 0.514,
|
1153 |
+
"step": 188
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.44,
|
1157 |
+
"learning_rate": 3.0589189193822894e-06,
|
1158 |
+
"loss": 0.5291,
|
1159 |
+
"step": 189
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 0.44,
|
1163 |
+
"learning_rate": 3.0405894662447682e-06,
|
1164 |
+
"loss": 0.5186,
|
1165 |
+
"step": 190
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.45,
|
1169 |
+
"learning_rate": 3.0222294770672054e-06,
|
1170 |
+
"loss": 0.5483,
|
1171 |
+
"step": 191
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.45,
|
1175 |
+
"learning_rate": 3.0038399889422553e-06,
|
1176 |
+
"loss": 0.5561,
|
1177 |
+
"step": 192
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"epoch": 0.45,
|
1181 |
+
"learning_rate": 2.985422040628867e-06,
|
1182 |
+
"loss": 0.5307,
|
1183 |
+
"step": 193
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"epoch": 0.45,
|
1187 |
+
"learning_rate": 2.9669766724936074e-06,
|
1188 |
+
"loss": 0.5137,
|
1189 |
+
"step": 194
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 0.46,
|
1193 |
+
"learning_rate": 2.948504926451896e-06,
|
1194 |
+
"loss": 0.5222,
|
1195 |
+
"step": 195
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.46,
|
1199 |
+
"learning_rate": 2.930007845909146e-06,
|
1200 |
+
"loss": 0.5254,
|
1201 |
+
"step": 196
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 0.46,
|
1205 |
+
"learning_rate": 2.911486475701835e-06,
|
1206 |
+
"loss": 0.5369,
|
1207 |
+
"step": 197
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.46,
|
1211 |
+
"learning_rate": 2.892941862038475e-06,
|
1212 |
+
"loss": 0.5371,
|
1213 |
+
"step": 198
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.46,
|
1217 |
+
"learning_rate": 2.8743750524405254e-06,
|
1218 |
+
"loss": 0.5285,
|
1219 |
+
"step": 199
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"epoch": 0.47,
|
1223 |
+
"learning_rate": 2.8557870956832135e-06,
|
1224 |
+
"loss": 0.5319,
|
1225 |
+
"step": 200
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"epoch": 0.47,
|
1229 |
+
"learning_rate": 2.837179041736299e-06,
|
1230 |
+
"loss": 0.4983,
|
1231 |
+
"step": 201
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"epoch": 0.47,
|
1235 |
+
"learning_rate": 2.8185519417047624e-06,
|
1236 |
+
"loss": 0.4962,
|
1237 |
+
"step": 202
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.47,
|
1241 |
+
"learning_rate": 2.799906847769433e-06,
|
1242 |
+
"loss": 0.5055,
|
1243 |
+
"step": 203
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"epoch": 0.48,
|
1247 |
+
"learning_rate": 2.781244813127552e-06,
|
1248 |
+
"loss": 0.4918,
|
1249 |
+
"step": 204
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.48,
|
1253 |
+
"learning_rate": 2.762566891933285e-06,
|
1254 |
+
"loss": 0.5191,
|
1255 |
+
"step": 205
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.48,
|
1259 |
+
"learning_rate": 2.743874139238171e-06,
|
1260 |
+
"loss": 0.5509,
|
1261 |
+
"step": 206
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"epoch": 0.48,
|
1265 |
+
"learning_rate": 2.725167610931534e-06,
|
1266 |
+
"loss": 0.5296,
|
1267 |
+
"step": 207
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 0.49,
|
1271 |
+
"learning_rate": 2.7064483636808314e-06,
|
1272 |
+
"loss": 0.5335,
|
1273 |
+
"step": 208
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 0.49,
|
1277 |
+
"learning_rate": 2.687717454871971e-06,
|
1278 |
+
"loss": 0.4982,
|
1279 |
+
"step": 209
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.49,
|
1283 |
+
"learning_rate": 2.6689759425495833e-06,
|
1284 |
+
"loss": 0.4864,
|
1285 |
+
"step": 210
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"epoch": 0.49,
|
1289 |
+
"learning_rate": 2.650224885357251e-06,
|
1290 |
+
"loss": 0.5334,
|
1291 |
+
"step": 211
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.5,
|
1295 |
+
"learning_rate": 2.6314653424777194e-06,
|
1296 |
+
"loss": 0.5309,
|
1297 |
+
"step": 212
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.5,
|
1301 |
+
"learning_rate": 2.612698373573056e-06,
|
1302 |
+
"loss": 0.5346,
|
1303 |
+
"step": 213
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 0.5,
|
1307 |
+
"learning_rate": 2.593925038724802e-06,
|
1308 |
+
"loss": 0.5144,
|
1309 |
+
"step": 214
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 0.5,
|
1313 |
+
"eval_loss": 0.5360019207000732,
|
1314 |
+
"eval_runtime": 973.5712,
|
1315 |
+
"eval_samples_per_second": 1.157,
|
1316 |
+
"eval_steps_per_second": 0.145,
|
1317 |
+
"step": 214
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.5,
|
1321 |
+
"learning_rate": 2.575146398374087e-06,
|
1322 |
+
"loss": 0.5263,
|
1323 |
+
"step": 215
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.5,
|
1327 |
+
"learning_rate": 2.5563635132617305e-06,
|
1328 |
+
"loss": 0.5135,
|
1329 |
+
"step": 216
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.51,
|
1333 |
+
"learning_rate": 2.5375774443683263e-06,
|
1334 |
+
"loss": 0.5003,
|
1335 |
+
"step": 217
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.51,
|
1339 |
+
"learning_rate": 2.518789252854305e-06,
|
1340 |
+
"loss": 0.5005,
|
1341 |
+
"step": 218
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.51,
|
1345 |
+
"learning_rate": 2.5e-06,
|
1346 |
+
"loss": 0.5006,
|
1347 |
+
"step": 219
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.51,
|
1351 |
+
"learning_rate": 2.4812107471456958e-06,
|
1352 |
+
"loss": 0.5052,
|
1353 |
+
"step": 220
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.52,
|
1357 |
+
"learning_rate": 2.4624225556316745e-06,
|
1358 |
+
"loss": 0.4966,
|
1359 |
+
"step": 221
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.52,
|
1363 |
+
"learning_rate": 2.44363648673827e-06,
|
1364 |
+
"loss": 0.4997,
|
1365 |
+
"step": 222
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.52,
|
1369 |
+
"learning_rate": 2.4248536016259137e-06,
|
1370 |
+
"loss": 0.535,
|
1371 |
+
"step": 223
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.52,
|
1375 |
+
"learning_rate": 2.4060749612751987e-06,
|
1376 |
+
"loss": 0.5156,
|
1377 |
+
"step": 224
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.53,
|
1381 |
+
"learning_rate": 2.3873016264269446e-06,
|
1382 |
+
"loss": 0.5505,
|
1383 |
+
"step": 225
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.53,
|
1387 |
+
"learning_rate": 2.368534657522281e-06,
|
1388 |
+
"loss": 0.4973,
|
1389 |
+
"step": 226
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.53,
|
1393 |
+
"learning_rate": 2.3497751146427494e-06,
|
1394 |
+
"loss": 0.5186,
|
1395 |
+
"step": 227
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.53,
|
1399 |
+
"learning_rate": 2.3310240574504184e-06,
|
1400 |
+
"loss": 0.5199,
|
1401 |
+
"step": 228
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.53,
|
1405 |
+
"learning_rate": 2.3122825451280294e-06,
|
1406 |
+
"loss": 0.546,
|
1407 |
+
"step": 229
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.54,
|
1411 |
+
"learning_rate": 2.2935516363191695e-06,
|
1412 |
+
"loss": 0.4939,
|
1413 |
+
"step": 230
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.54,
|
1417 |
+
"learning_rate": 2.2748323890684664e-06,
|
1418 |
+
"loss": 0.5012,
|
1419 |
+
"step": 231
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.54,
|
1423 |
+
"learning_rate": 2.2561258607618296e-06,
|
1424 |
+
"loss": 0.4843,
|
1425 |
+
"step": 232
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.54,
|
1429 |
+
"learning_rate": 2.2374331080667168e-06,
|
1430 |
+
"loss": 0.5267,
|
1431 |
+
"step": 233
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.55,
|
1435 |
+
"learning_rate": 2.2187551868724487e-06,
|
1436 |
+
"loss": 0.4927,
|
1437 |
+
"step": 234
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.55,
|
1441 |
+
"learning_rate": 2.200093152230568e-06,
|
1442 |
+
"loss": 0.4968,
|
1443 |
+
"step": 235
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.55,
|
1447 |
+
"learning_rate": 2.1814480582952376e-06,
|
1448 |
+
"loss": 0.4787,
|
1449 |
+
"step": 236
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.55,
|
1453 |
+
"learning_rate": 2.1628209582637024e-06,
|
1454 |
+
"loss": 0.4645,
|
1455 |
+
"step": 237
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.56,
|
1459 |
+
"learning_rate": 2.1442129043167877e-06,
|
1460 |
+
"loss": 0.5348,
|
1461 |
+
"step": 238
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.56,
|
1465 |
+
"learning_rate": 2.125624947559475e-06,
|
1466 |
+
"loss": 0.5095,
|
1467 |
+
"step": 239
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.56,
|
1471 |
+
"learning_rate": 2.1070581379615253e-06,
|
1472 |
+
"loss": 0.5282,
|
1473 |
+
"step": 240
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.56,
|
1477 |
+
"learning_rate": 2.088513524298165e-06,
|
1478 |
+
"loss": 0.5046,
|
1479 |
+
"step": 241
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.57,
|
1483 |
+
"learning_rate": 2.0699921540908542e-06,
|
1484 |
+
"loss": 0.5325,
|
1485 |
+
"step": 242
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.57,
|
1489 |
+
"learning_rate": 2.0514950735481053e-06,
|
1490 |
+
"loss": 0.5104,
|
1491 |
+
"step": 243
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.57,
|
1495 |
+
"learning_rate": 2.033023327506393e-06,
|
1496 |
+
"loss": 0.4881,
|
1497 |
+
"step": 244
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.57,
|
1501 |
+
"learning_rate": 2.014577959371134e-06,
|
1502 |
+
"loss": 0.4938,
|
1503 |
+
"step": 245
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.57,
|
1507 |
+
"learning_rate": 1.996160011057746e-06,
|
1508 |
+
"loss": 0.4977,
|
1509 |
+
"step": 246
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.58,
|
1513 |
+
"learning_rate": 1.9777705229327954e-06,
|
1514 |
+
"loss": 0.4936,
|
1515 |
+
"step": 247
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.58,
|
1519 |
+
"learning_rate": 1.959410533755232e-06,
|
1520 |
+
"loss": 0.5176,
|
1521 |
+
"step": 248
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.58,
|
1525 |
+
"learning_rate": 1.9410810806177105e-06,
|
1526 |
+
"loss": 0.5057,
|
1527 |
+
"step": 249
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.58,
|
1531 |
+
"learning_rate": 1.922783198888011e-06,
|
1532 |
+
"loss": 0.4982,
|
1533 |
+
"step": 250
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.59,
|
1537 |
+
"learning_rate": 1.9045179221505497e-06,
|
1538 |
+
"loss": 0.5128,
|
1539 |
+
"step": 251
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.59,
|
1543 |
+
"learning_rate": 1.8862862821480023e-06,
|
1544 |
+
"loss": 0.5186,
|
1545 |
+
"step": 252
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.59,
|
1549 |
+
"learning_rate": 1.8680893087230207e-06,
|
1550 |
+
"loss": 0.5112,
|
1551 |
+
"step": 253
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.59,
|
1555 |
+
"learning_rate": 1.8499280297600594e-06,
|
1556 |
+
"loss": 0.4928,
|
1557 |
+
"step": 254
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.6,
|
1561 |
+
"learning_rate": 1.8318034711273181e-06,
|
1562 |
+
"loss": 0.5209,
|
1563 |
+
"step": 255
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.6,
|
1567 |
+
"learning_rate": 1.813716656618788e-06,
|
1568 |
+
"loss": 0.5073,
|
1569 |
+
"step": 256
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.6,
|
1573 |
+
"learning_rate": 1.7956686078964257e-06,
|
1574 |
+
"loss": 0.4724,
|
1575 |
+
"step": 257
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.6,
|
1579 |
+
"learning_rate": 1.7776603444324445e-06,
|
1580 |
+
"loss": 0.51,
|
1581 |
+
"step": 258
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.6,
|
1585 |
+
"learning_rate": 1.759692883451721e-06,
|
1586 |
+
"loss": 0.5193,
|
1587 |
+
"step": 259
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.61,
|
1591 |
+
"learning_rate": 1.741767239874344e-06,
|
1592 |
+
"loss": 0.519,
|
1593 |
+
"step": 260
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.61,
|
1597 |
+
"learning_rate": 1.723884426258277e-06,
|
1598 |
+
"loss": 0.5073,
|
1599 |
+
"step": 261
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.61,
|
1603 |
+
"learning_rate": 1.7060454527421688e-06,
|
1604 |
+
"loss": 0.5178,
|
1605 |
+
"step": 262
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.61,
|
1609 |
+
"learning_rate": 1.6882513269882916e-06,
|
1610 |
+
"loss": 0.5006,
|
1611 |
+
"step": 263
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.62,
|
1615 |
+
"learning_rate": 1.6705030541256211e-06,
|
1616 |
+
"loss": 0.4955,
|
1617 |
+
"step": 264
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.62,
|
1621 |
+
"learning_rate": 1.6528016366930594e-06,
|
1622 |
+
"loss": 0.5231,
|
1623 |
+
"step": 265
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.62,
|
1627 |
+
"learning_rate": 1.6351480745828098e-06,
|
1628 |
+
"loss": 0.4647,
|
1629 |
+
"step": 266
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.62,
|
1633 |
+
"learning_rate": 1.6175433649838901e-06,
|
1634 |
+
"loss": 0.493,
|
1635 |
+
"step": 267
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.63,
|
1639 |
+
"learning_rate": 1.5999885023258099e-06,
|
1640 |
+
"loss": 0.4896,
|
1641 |
+
"step": 268
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.63,
|
1645 |
+
"learning_rate": 1.5824844782223956e-06,
|
1646 |
+
"loss": 0.516,
|
1647 |
+
"step": 269
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.63,
|
1651 |
+
"learning_rate": 1.5650322814157764e-06,
|
1652 |
+
"loss": 0.5059,
|
1653 |
+
"step": 270
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.63,
|
1657 |
+
"learning_rate": 1.5476328977205396e-06,
|
1658 |
+
"loss": 0.5017,
|
1659 |
+
"step": 271
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.64,
|
1663 |
+
"learning_rate": 1.5302873099680378e-06,
|
1664 |
+
"loss": 0.4947,
|
1665 |
+
"step": 272
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.64,
|
1669 |
+
"learning_rate": 1.5129964979508792e-06,
|
1670 |
+
"loss": 0.4764,
|
1671 |
+
"step": 273
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.64,
|
1675 |
+
"learning_rate": 1.495761438367577e-06,
|
1676 |
+
"loss": 0.5008,
|
1677 |
+
"step": 274
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.64,
|
1681 |
+
"learning_rate": 1.47858310476738e-06,
|
1682 |
+
"loss": 0.5402,
|
1683 |
+
"step": 275
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.64,
|
1687 |
+
"learning_rate": 1.4614624674952843e-06,
|
1688 |
+
"loss": 0.4882,
|
1689 |
+
"step": 276
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.65,
|
1693 |
+
"learning_rate": 1.4444004936372166e-06,
|
1694 |
+
"loss": 0.4946,
|
1695 |
+
"step": 277
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.65,
|
1699 |
+
"learning_rate": 1.4273981469654093e-06,
|
1700 |
+
"loss": 0.5305,
|
1701 |
+
"step": 278
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.65,
|
1705 |
+
"learning_rate": 1.4104563878839623e-06,
|
1706 |
+
"loss": 0.4951,
|
1707 |
+
"step": 279
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.65,
|
1711 |
+
"learning_rate": 1.3935761733745865e-06,
|
1712 |
+
"loss": 0.5188,
|
1713 |
+
"step": 280
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.66,
|
1717 |
+
"learning_rate": 1.3767584569425562e-06,
|
1718 |
+
"loss": 0.4943,
|
1719 |
+
"step": 281
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.66,
|
1723 |
+
"learning_rate": 1.360004188562841e-06,
|
1724 |
+
"loss": 0.485,
|
1725 |
+
"step": 282
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.66,
|
1729 |
+
"learning_rate": 1.3433143146264494e-06,
|
1730 |
+
"loss": 0.5002,
|
1731 |
+
"step": 283
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.66,
|
1735 |
+
"learning_rate": 1.3266897778869704e-06,
|
1736 |
+
"loss": 0.5005,
|
1737 |
+
"step": 284
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.67,
|
1741 |
+
"learning_rate": 1.3101315174073162e-06,
|
1742 |
+
"loss": 0.513,
|
1743 |
+
"step": 285
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.67,
|
1747 |
+
"learning_rate": 1.2936404685066852e-06,
|
1748 |
+
"loss": 0.5159,
|
1749 |
+
"step": 286
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.67,
|
1753 |
+
"learning_rate": 1.2772175627077204e-06,
|
1754 |
+
"loss": 0.5532,
|
1755 |
+
"step": 287
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.67,
|
1759 |
+
"learning_rate": 1.2608637276838987e-06,
|
1760 |
+
"loss": 0.4815,
|
1761 |
+
"step": 288
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.67,
|
1765 |
+
"learning_rate": 1.244579887207126e-06,
|
1766 |
+
"loss": 0.4783,
|
1767 |
+
"step": 289
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.68,
|
1771 |
+
"learning_rate": 1.2283669610955543e-06,
|
1772 |
+
"loss": 0.4875,
|
1773 |
+
"step": 290
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.68,
|
1777 |
+
"learning_rate": 1.2122258651616305e-06,
|
1778 |
+
"loss": 0.5021,
|
1779 |
+
"step": 291
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.68,
|
1783 |
+
"learning_rate": 1.1961575111603588e-06,
|
1784 |
+
"loss": 0.4948,
|
1785 |
+
"step": 292
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.68,
|
1789 |
+
"learning_rate": 1.1801628067378033e-06,
|
1790 |
+
"loss": 0.4622,
|
1791 |
+
"step": 293
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.69,
|
1795 |
+
"learning_rate": 1.1642426553798175e-06,
|
1796 |
+
"loss": 0.5352,
|
1797 |
+
"step": 294
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.69,
|
1801 |
+
"learning_rate": 1.148397956361007e-06,
|
1802 |
+
"loss": 0.6051,
|
1803 |
+
"step": 295
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.69,
|
1807 |
+
"learning_rate": 1.1326296046939334e-06,
|
1808 |
+
"loss": 0.506,
|
1809 |
+
"step": 296
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.69,
|
1813 |
+
"learning_rate": 1.1169384910785613e-06,
|
1814 |
+
"loss": 0.5109,
|
1815 |
+
"step": 297
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.7,
|
1819 |
+
"learning_rate": 1.1013255018519426e-06,
|
1820 |
+
"loss": 0.5157,
|
1821 |
+
"step": 298
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.7,
|
1825 |
+
"learning_rate": 1.0857915189381512e-06,
|
1826 |
+
"loss": 0.5131,
|
1827 |
+
"step": 299
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.7,
|
1831 |
+
"learning_rate": 1.0703374197984654e-06,
|
1832 |
+
"loss": 0.5295,
|
1833 |
+
"step": 300
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.7,
|
1837 |
+
"learning_rate": 1.054964077381803e-06,
|
1838 |
+
"loss": 0.4669,
|
1839 |
+
"step": 301
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.71,
|
1843 |
+
"learning_rate": 1.0396723600754144e-06,
|
1844 |
+
"loss": 0.4831,
|
1845 |
+
"step": 302
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.71,
|
1849 |
+
"learning_rate": 1.0244631316558268e-06,
|
1850 |
+
"loss": 0.5104,
|
1851 |
+
"step": 303
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.71,
|
1855 |
+
"learning_rate": 1.009337251240055e-06,
|
1856 |
+
"loss": 0.4822,
|
1857 |
+
"step": 304
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.71,
|
1861 |
+
"learning_rate": 9.942955732370706e-07,
|
1862 |
+
"loss": 0.4747,
|
1863 |
+
"step": 305
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.71,
|
1867 |
+
"learning_rate": 9.793389472995393e-07,
|
1868 |
+
"loss": 0.4954,
|
1869 |
+
"step": 306
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.72,
|
1873 |
+
"learning_rate": 9.644682182758305e-07,
|
1874 |
+
"loss": 0.4992,
|
1875 |
+
"step": 307
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.72,
|
1879 |
+
"learning_rate": 9.496842261622921e-07,
|
1880 |
+
"loss": 0.4863,
|
1881 |
+
"step": 308
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.72,
|
1885 |
+
"learning_rate": 9.349878060557998e-07,
|
1886 |
+
"loss": 0.4711,
|
1887 |
+
"step": 309
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.72,
|
1891 |
+
"learning_rate": 9.203797881065907e-07,
|
1892 |
+
"loss": 0.54,
|
1893 |
+
"step": 310
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.73,
|
1897 |
+
"learning_rate": 9.058609974713655e-07,
|
1898 |
+
"loss": 0.5112,
|
1899 |
+
"step": 311
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.73,
|
1903 |
+
"learning_rate": 8.914322542666822e-07,
|
1904 |
+
"loss": 0.4862,
|
1905 |
+
"step": 312
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.73,
|
1909 |
+
"learning_rate": 8.770943735226303e-07,
|
1910 |
+
"loss": 0.4967,
|
1911 |
+
"step": 313
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.73,
|
1915 |
+
"learning_rate": 8.628481651367876e-07,
|
1916 |
+
"loss": 0.4836,
|
1917 |
+
"step": 314
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.74,
|
1921 |
+
"learning_rate": 8.486944338284797e-07,
|
1922 |
+
"loss": 0.4816,
|
1923 |
+
"step": 315
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.74,
|
1927 |
+
"learning_rate": 8.346339790933167e-07,
|
1928 |
+
"loss": 0.4775,
|
1929 |
+
"step": 316
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.74,
|
1933 |
+
"learning_rate": 8.206675951580382e-07,
|
1934 |
+
"loss": 0.4966,
|
1935 |
+
"step": 317
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.74,
|
1939 |
+
"learning_rate": 8.067960709356479e-07,
|
1940 |
+
"loss": 0.4697,
|
1941 |
+
"step": 318
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.74,
|
1945 |
+
"learning_rate": 7.930201899808476e-07,
|
1946 |
+
"loss": 0.4939,
|
1947 |
+
"step": 319
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.75,
|
1951 |
+
"learning_rate": 7.793407304457836e-07,
|
1952 |
+
"loss": 0.4889,
|
1953 |
+
"step": 320
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.75,
|
1957 |
+
"learning_rate": 7.657584650360847e-07,
|
1958 |
+
"loss": 0.483,
|
1959 |
+
"step": 321
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.75,
|
1963 |
+
"eval_loss": 0.5117549896240234,
|
1964 |
+
"eval_runtime": 974.2092,
|
1965 |
+
"eval_samples_per_second": 1.156,
|
1966 |
+
"eval_steps_per_second": 0.145,
|
1967 |
+
"step": 321
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 0.75,
|
1971 |
+
"learning_rate": 7.522741609672194e-07,
|
1972 |
+
"loss": 0.4917,
|
1973 |
+
"step": 322
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 0.75,
|
1977 |
+
"learning_rate": 7.388885799211573e-07,
|
1978 |
+
"loss": 0.5108,
|
1979 |
+
"step": 323
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 0.76,
|
1983 |
+
"learning_rate": 7.256024780033418e-07,
|
1984 |
+
"loss": 0.4503,
|
1985 |
+
"step": 324
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 0.76,
|
1989 |
+
"learning_rate": 7.124166056999854e-07,
|
1990 |
+
"loss": 0.4906,
|
1991 |
+
"step": 325
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 0.76,
|
1995 |
+
"learning_rate": 6.993317078356709e-07,
|
1996 |
+
"loss": 0.492,
|
1997 |
+
"step": 326
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.76,
|
2001 |
+
"learning_rate": 6.863485235312853e-07,
|
2002 |
+
"loss": 0.4756,
|
2003 |
+
"step": 327
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"epoch": 0.77,
|
2007 |
+
"learning_rate": 6.734677861622652e-07,
|
2008 |
+
"loss": 0.5299,
|
2009 |
+
"step": 328
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 0.77,
|
2013 |
+
"learning_rate": 6.60690223317171e-07,
|
2014 |
+
"loss": 0.4963,
|
2015 |
+
"step": 329
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 0.77,
|
2019 |
+
"learning_rate": 6.480165567565913e-07,
|
2020 |
+
"loss": 0.5079,
|
2021 |
+
"step": 330
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 0.77,
|
2025 |
+
"learning_rate": 6.354475023723685e-07,
|
2026 |
+
"loss": 0.4878,
|
2027 |
+
"step": 331
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"epoch": 0.78,
|
2031 |
+
"learning_rate": 6.229837701471645e-07,
|
2032 |
+
"loss": 0.4631,
|
2033 |
+
"step": 332
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 0.78,
|
2037 |
+
"learning_rate": 6.106260641143547e-07,
|
2038 |
+
"loss": 0.4811,
|
2039 |
+
"step": 333
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.78,
|
2043 |
+
"learning_rate": 5.983750823182574e-07,
|
2044 |
+
"loss": 0.4797,
|
2045 |
+
"step": 334
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"epoch": 0.78,
|
2049 |
+
"learning_rate": 5.86231516774709e-07,
|
2050 |
+
"loss": 0.5034,
|
2051 |
+
"step": 335
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 0.78,
|
2055 |
+
"learning_rate": 5.741960534319677e-07,
|
2056 |
+
"loss": 0.5047,
|
2057 |
+
"step": 336
|
2058 |
+
},
|
2059 |
+
{
|
2060 |
+
"epoch": 0.79,
|
2061 |
+
"learning_rate": 5.622693721319728e-07,
|
2062 |
+
"loss": 0.508,
|
2063 |
+
"step": 337
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"epoch": 0.79,
|
2067 |
+
"learning_rate": 5.504521465719392e-07,
|
2068 |
+
"loss": 0.4828,
|
2069 |
+
"step": 338
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"epoch": 0.79,
|
2073 |
+
"learning_rate": 5.387450442663026e-07,
|
2074 |
+
"loss": 0.4878,
|
2075 |
+
"step": 339
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 0.79,
|
2079 |
+
"learning_rate": 5.271487265090163e-07,
|
2080 |
+
"loss": 0.4994,
|
2081 |
+
"step": 340
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.8,
|
2085 |
+
"learning_rate": 5.156638483361933e-07,
|
2086 |
+
"loss": 0.5069,
|
2087 |
+
"step": 341
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 0.8,
|
2091 |
+
"learning_rate": 5.0429105848911e-07,
|
2092 |
+
"loss": 0.4739,
|
2093 |
+
"step": 342
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 0.8,
|
2097 |
+
"learning_rate": 4.930309993775578e-07,
|
2098 |
+
"loss": 0.4773,
|
2099 |
+
"step": 343
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 0.8,
|
2103 |
+
"learning_rate": 4.818843070435561e-07,
|
2104 |
+
"loss": 0.4791,
|
2105 |
+
"step": 344
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"epoch": 0.81,
|
2109 |
+
"learning_rate": 4.708516111254238e-07,
|
2110 |
+
"loss": 0.4662,
|
2111 |
+
"step": 345
|
2112 |
+
},
|
2113 |
+
{
|
2114 |
+
"epoch": 0.81,
|
2115 |
+
"learning_rate": 4.5993353482221697e-07,
|
2116 |
+
"loss": 0.4834,
|
2117 |
+
"step": 346
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 0.81,
|
2121 |
+
"learning_rate": 4.4913069485852197e-07,
|
2122 |
+
"loss": 0.5012,
|
2123 |
+
"step": 347
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.81,
|
2127 |
+
"learning_rate": 4.3844370144962153e-07,
|
2128 |
+
"loss": 0.492,
|
2129 |
+
"step": 348
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 0.81,
|
2133 |
+
"learning_rate": 4.2787315826702396e-07,
|
2134 |
+
"loss": 0.468,
|
2135 |
+
"step": 349
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"epoch": 0.82,
|
2139 |
+
"learning_rate": 4.1741966240436446e-07,
|
2140 |
+
"loss": 0.485,
|
2141 |
+
"step": 350
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"epoch": 0.82,
|
2145 |
+
"learning_rate": 4.070838043436787e-07,
|
2146 |
+
"loss": 0.5009,
|
2147 |
+
"step": 351
|
2148 |
+
},
|
2149 |
+
{
|
2150 |
+
"epoch": 0.82,
|
2151 |
+
"learning_rate": 3.9686616792204677e-07,
|
2152 |
+
"loss": 0.4994,
|
2153 |
+
"step": 352
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"epoch": 0.82,
|
2157 |
+
"learning_rate": 3.867673302986161e-07,
|
2158 |
+
"loss": 0.4665,
|
2159 |
+
"step": 353
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 0.83,
|
2163 |
+
"learning_rate": 3.7678786192199695e-07,
|
2164 |
+
"loss": 0.482,
|
2165 |
+
"step": 354
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.83,
|
2169 |
+
"learning_rate": 3.6692832649804085e-07,
|
2170 |
+
"loss": 0.4914,
|
2171 |
+
"step": 355
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"epoch": 0.83,
|
2175 |
+
"learning_rate": 3.571892809580013e-07,
|
2176 |
+
"loss": 0.5156,
|
2177 |
+
"step": 356
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 0.83,
|
2181 |
+
"learning_rate": 3.475712754270716e-07,
|
2182 |
+
"loss": 0.5109,
|
2183 |
+
"step": 357
|
2184 |
+
},
|
2185 |
+
{
|
2186 |
+
"epoch": 0.84,
|
2187 |
+
"learning_rate": 3.3807485319331037e-07,
|
2188 |
+
"loss": 0.4865,
|
2189 |
+
"step": 358
|
2190 |
+
},
|
2191 |
+
{
|
2192 |
+
"epoch": 0.84,
|
2193 |
+
"learning_rate": 3.2870055067695557e-07,
|
2194 |
+
"loss": 0.4672,
|
2195 |
+
"step": 359
|
2196 |
+
},
|
2197 |
+
{
|
2198 |
+
"epoch": 0.84,
|
2199 |
+
"learning_rate": 3.194488974001203e-07,
|
2200 |
+
"loss": 0.5019,
|
2201 |
+
"step": 360
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 0.84,
|
2205 |
+
"learning_rate": 3.1032041595688514e-07,
|
2206 |
+
"loss": 0.4891,
|
2207 |
+
"step": 361
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.85,
|
2211 |
+
"learning_rate": 3.0131562198377763e-07,
|
2212 |
+
"loss": 0.4944,
|
2213 |
+
"step": 362
|
2214 |
+
},
|
2215 |
+
{
|
2216 |
+
"epoch": 0.85,
|
2217 |
+
"learning_rate": 2.9243502413064365e-07,
|
2218 |
+
"loss": 0.4971,
|
2219 |
+
"step": 363
|
2220 |
+
},
|
2221 |
+
{
|
2222 |
+
"epoch": 0.85,
|
2223 |
+
"learning_rate": 2.8367912403191976e-07,
|
2224 |
+
"loss": 0.4814,
|
2225 |
+
"step": 364
|
2226 |
+
},
|
2227 |
+
{
|
2228 |
+
"epoch": 0.85,
|
2229 |
+
"learning_rate": 2.7504841627829293e-07,
|
2230 |
+
"loss": 0.4853,
|
2231 |
+
"step": 365
|
2232 |
+
},
|
2233 |
+
{
|
2234 |
+
"epoch": 0.85,
|
2235 |
+
"learning_rate": 2.6654338838876664e-07,
|
2236 |
+
"loss": 0.4849,
|
2237 |
+
"step": 366
|
2238 |
+
},
|
2239 |
+
{
|
2240 |
+
"epoch": 0.86,
|
2241 |
+
"learning_rate": 2.581645207831204e-07,
|
2242 |
+
"loss": 0.4495,
|
2243 |
+
"step": 367
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 0.86,
|
2247 |
+
"learning_rate": 2.4991228675477293e-07,
|
2248 |
+
"loss": 0.5105,
|
2249 |
+
"step": 368
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.86,
|
2253 |
+
"learning_rate": 2.4178715244404796e-07,
|
2254 |
+
"loss": 0.4874,
|
2255 |
+
"step": 369
|
2256 |
+
},
|
2257 |
+
{
|
2258 |
+
"epoch": 0.86,
|
2259 |
+
"learning_rate": 2.3378957681184283e-07,
|
2260 |
+
"loss": 0.4764,
|
2261 |
+
"step": 370
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"epoch": 0.87,
|
2265 |
+
"learning_rate": 2.2592001161370392e-07,
|
2266 |
+
"loss": 0.516,
|
2267 |
+
"step": 371
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"epoch": 0.87,
|
2271 |
+
"learning_rate": 2.1817890137430936e-07,
|
2272 |
+
"loss": 0.5093,
|
2273 |
+
"step": 372
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 0.87,
|
2277 |
+
"learning_rate": 2.1056668336235624e-07,
|
2278 |
+
"loss": 0.484,
|
2279 |
+
"step": 373
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 0.87,
|
2283 |
+
"learning_rate": 2.0308378756586562e-07,
|
2284 |
+
"loss": 0.4886,
|
2285 |
+
"step": 374
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 0.88,
|
2289 |
+
"learning_rate": 1.9573063666788878e-07,
|
2290 |
+
"loss": 0.5288,
|
2291 |
+
"step": 375
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.88,
|
2295 |
+
"learning_rate": 1.8850764602263428e-07,
|
2296 |
+
"loss": 0.5072,
|
2297 |
+
"step": 376
|
2298 |
+
},
|
2299 |
+
{
|
2300 |
+
"epoch": 0.88,
|
2301 |
+
"learning_rate": 1.8141522363200797e-07,
|
2302 |
+
"loss": 0.4875,
|
2303 |
+
"step": 377
|
2304 |
+
},
|
2305 |
+
{
|
2306 |
+
"epoch": 0.88,
|
2307 |
+
"learning_rate": 1.7445377012256127e-07,
|
2308 |
+
"loss": 0.4842,
|
2309 |
+
"step": 378
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"epoch": 0.88,
|
2313 |
+
"learning_rate": 1.676236787228652e-07,
|
2314 |
+
"loss": 0.4777,
|
2315 |
+
"step": 379
|
2316 |
+
},
|
2317 |
+
{
|
2318 |
+
"epoch": 0.89,
|
2319 |
+
"learning_rate": 1.6092533524129623e-07,
|
2320 |
+
"loss": 0.4904,
|
2321 |
+
"step": 380
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 0.89,
|
2325 |
+
"learning_rate": 1.543591180442436e-07,
|
2326 |
+
"loss": 0.4872,
|
2327 |
+
"step": 381
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 0.89,
|
2331 |
+
"learning_rate": 1.4792539803473921e-07,
|
2332 |
+
"loss": 0.4778,
|
2333 |
+
"step": 382
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.89,
|
2337 |
+
"learning_rate": 1.4162453863150183e-07,
|
2338 |
+
"loss": 0.4944,
|
2339 |
+
"step": 383
|
2340 |
+
},
|
2341 |
+
{
|
2342 |
+
"epoch": 0.9,
|
2343 |
+
"learning_rate": 1.3545689574841341e-07,
|
2344 |
+
"loss": 0.4711,
|
2345 |
+
"step": 384
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 0.9,
|
2349 |
+
"learning_rate": 1.2942281777441168e-07,
|
2350 |
+
"loss": 0.5078,
|
2351 |
+
"step": 385
|
2352 |
+
},
|
2353 |
+
{
|
2354 |
+
"epoch": 0.9,
|
2355 |
+
"learning_rate": 1.2352264555381134e-07,
|
2356 |
+
"loss": 0.4752,
|
2357 |
+
"step": 386
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 0.9,
|
2361 |
+
"learning_rate": 1.1775671236705366e-07,
|
2362 |
+
"loss": 0.4983,
|
2363 |
+
"step": 387
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"epoch": 0.91,
|
2367 |
+
"learning_rate": 1.121253439118769e-07,
|
2368 |
+
"loss": 0.4865,
|
2369 |
+
"step": 388
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 0.91,
|
2373 |
+
"learning_rate": 1.0662885828492037e-07,
|
2374 |
+
"loss": 0.4872,
|
2375 |
+
"step": 389
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.91,
|
2379 |
+
"learning_rate": 1.0126756596375687e-07,
|
2380 |
+
"loss": 0.4642,
|
2381 |
+
"step": 390
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 0.91,
|
2385 |
+
"learning_rate": 9.604176978935342e-08,
|
2386 |
+
"loss": 0.4933,
|
2387 |
+
"step": 391
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 0.92,
|
2391 |
+
"learning_rate": 9.095176494896662e-08,
|
2392 |
+
"loss": 0.5095,
|
2393 |
+
"step": 392
|
2394 |
+
},
|
2395 |
+
{
|
2396 |
+
"epoch": 0.92,
|
2397 |
+
"learning_rate": 8.599783895946762e-08,
|
2398 |
+
"loss": 0.5184,
|
2399 |
+
"step": 393
|
2400 |
+
},
|
2401 |
+
{
|
2402 |
+
"epoch": 0.92,
|
2403 |
+
"learning_rate": 8.118027165109926e-08,
|
2404 |
+
"loss": 0.5139,
|
2405 |
+
"step": 394
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"epoch": 0.92,
|
2409 |
+
"learning_rate": 7.649933515167407e-08,
|
2410 |
+
"loss": 0.4938,
|
2411 |
+
"step": 395
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 0.92,
|
2415 |
+
"learning_rate": 7.195529387119815e-08,
|
2416 |
+
"loss": 0.4902,
|
2417 |
+
"step": 396
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.93,
|
2421 |
+
"learning_rate": 6.75484044869379e-08,
|
2422 |
+
"loss": 0.4729,
|
2423 |
+
"step": 397
|
2424 |
+
},
|
2425 |
+
{
|
2426 |
+
"epoch": 0.93,
|
2427 |
+
"learning_rate": 6.327891592892126e-08,
|
2428 |
+
"loss": 0.4762,
|
2429 |
+
"step": 398
|
2430 |
+
},
|
2431 |
+
{
|
2432 |
+
"epoch": 0.93,
|
2433 |
+
"learning_rate": 5.914706936587494e-08,
|
2434 |
+
"loss": 0.4657,
|
2435 |
+
"step": 399
|
2436 |
+
},
|
2437 |
+
{
|
2438 |
+
"epoch": 0.93,
|
2439 |
+
"learning_rate": 5.515309819160402e-08,
|
2440 |
+
"loss": 0.4822,
|
2441 |
+
"step": 400
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"epoch": 0.94,
|
2445 |
+
"learning_rate": 5.129722801180542e-08,
|
2446 |
+
"loss": 0.4863,
|
2447 |
+
"step": 401
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 0.94,
|
2451 |
+
"learning_rate": 4.75796766313269e-08,
|
2452 |
+
"loss": 0.4953,
|
2453 |
+
"step": 402
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 0.94,
|
2457 |
+
"learning_rate": 4.4000654041862764e-08,
|
2458 |
+
"loss": 0.4952,
|
2459 |
+
"step": 403
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.94,
|
2463 |
+
"learning_rate": 4.05603624100917e-08,
|
2464 |
+
"loss": 0.4605,
|
2465 |
+
"step": 404
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 0.95,
|
2469 |
+
"learning_rate": 3.72589960662581e-08,
|
2470 |
+
"loss": 0.4967,
|
2471 |
+
"step": 405
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 0.95,
|
2475 |
+
"learning_rate": 3.4096741493194196e-08,
|
2476 |
+
"loss": 0.4784,
|
2477 |
+
"step": 406
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 0.95,
|
2481 |
+
"learning_rate": 3.107377731578709e-08,
|
2482 |
+
"loss": 0.5004,
|
2483 |
+
"step": 407
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 0.95,
|
2487 |
+
"learning_rate": 2.819027429088822e-08,
|
2488 |
+
"loss": 0.4836,
|
2489 |
+
"step": 408
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 0.96,
|
2493 |
+
"learning_rate": 2.544639529766829e-08,
|
2494 |
+
"loss": 0.475,
|
2495 |
+
"step": 409
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 0.96,
|
2499 |
+
"learning_rate": 2.284229532841603e-08,
|
2500 |
+
"loss": 0.4853,
|
2501 |
+
"step": 410
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.96,
|
2505 |
+
"learning_rate": 2.0378121479783798e-08,
|
2506 |
+
"loss": 0.5007,
|
2507 |
+
"step": 411
|
2508 |
+
},
|
2509 |
+
{
|
2510 |
+
"epoch": 0.96,
|
2511 |
+
"learning_rate": 1.8054012944479225e-08,
|
2512 |
+
"loss": 0.4842,
|
2513 |
+
"step": 412
|
2514 |
+
},
|
2515 |
+
{
|
2516 |
+
"epoch": 0.96,
|
2517 |
+
"learning_rate": 1.5870101003402083e-08,
|
2518 |
+
"loss": 0.4887,
|
2519 |
+
"step": 413
|
2520 |
+
},
|
2521 |
+
{
|
2522 |
+
"epoch": 0.97,
|
2523 |
+
"learning_rate": 1.382650901822713e-08,
|
2524 |
+
"loss": 0.492,
|
2525 |
+
"step": 414
|
2526 |
+
},
|
2527 |
+
{
|
2528 |
+
"epoch": 0.97,
|
2529 |
+
"learning_rate": 1.1923352424439149e-08,
|
2530 |
+
"loss": 0.48,
|
2531 |
+
"step": 415
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"epoch": 0.97,
|
2535 |
+
"learning_rate": 1.0160738724809549e-08,
|
2536 |
+
"loss": 0.5003,
|
2537 |
+
"step": 416
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 0.97,
|
2541 |
+
"learning_rate": 8.538767483325384e-09,
|
2542 |
+
"loss": 0.5103,
|
2543 |
+
"step": 417
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.98,
|
2547 |
+
"learning_rate": 7.05753031956441e-09,
|
2548 |
+
"loss": 0.5304,
|
2549 |
+
"step": 418
|
2550 |
+
},
|
2551 |
+
{
|
2552 |
+
"epoch": 0.98,
|
2553 |
+
"learning_rate": 5.717110903520617e-09,
|
2554 |
+
"loss": 0.5166,
|
2555 |
+
"step": 419
|
2556 |
+
},
|
2557 |
+
{
|
2558 |
+
"epoch": 0.98,
|
2559 |
+
"learning_rate": 4.517584950877451e-09,
|
2560 |
+
"loss": 0.4779,
|
2561 |
+
"step": 420
|
2562 |
+
},
|
2563 |
+
{
|
2564 |
+
"epoch": 0.98,
|
2565 |
+
"learning_rate": 3.4590202187315124e-09,
|
2566 |
+
"loss": 0.5138,
|
2567 |
+
"step": 421
|
2568 |
+
},
|
2569 |
+
{
|
2570 |
+
"epoch": 0.99,
|
2571 |
+
"learning_rate": 2.5414765017642285e-09,
|
2572 |
+
"loss": 0.5101,
|
2573 |
+
"step": 422
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"epoch": 0.99,
|
2577 |
+
"learning_rate": 1.765005628865113e-09,
|
2578 |
+
"loss": 0.4836,
|
2579 |
+
"step": 423
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 0.99,
|
2583 |
+
"learning_rate": 1.1296514602038289e-09,
|
2584 |
+
"loss": 0.5055,
|
2585 |
+
"step": 424
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.99,
|
2589 |
+
"learning_rate": 6.354498847521706e-10,
|
2590 |
+
"loss": 0.4525,
|
2591 |
+
"step": 425
|
2592 |
+
},
|
2593 |
+
{
|
2594 |
+
"epoch": 0.99,
|
2595 |
+
"learning_rate": 2.8242881825846225e-10,
|
2596 |
+
"loss": 0.4781,
|
2597 |
+
"step": 426
|
2598 |
+
},
|
2599 |
+
{
|
2600 |
+
"epoch": 1.0,
|
2601 |
+
"learning_rate": 7.060820166826521e-11,
|
2602 |
+
"loss": 0.5002,
|
2603 |
+
"step": 427
|
2604 |
+
},
|
2605 |
+
{
|
2606 |
+
"epoch": 1.0,
|
2607 |
+
"learning_rate": 0.0,
|
2608 |
+
"loss": 0.4674,
|
2609 |
+
"step": 428
|
2610 |
+
},
|
2611 |
+
{
|
2612 |
+
"epoch": 1.0,
|
2613 |
+
"eval_loss": 0.5059249997138977,
|
2614 |
+
"eval_runtime": 973.6949,
|
2615 |
+
"eval_samples_per_second": 1.156,
|
2616 |
+
"eval_steps_per_second": 0.145,
|
2617 |
+
"step": 428
|
2618 |
+
}
|
2619 |
+
],
|
2620 |
+
"logging_steps": 1,
|
2621 |
+
"max_steps": 428,
|
2622 |
+
"num_input_tokens_seen": 0,
|
2623 |
+
"num_train_epochs": 1,
|
2624 |
+
"save_steps": 214,
|
2625 |
+
"total_flos": 179124295434240.0,
|
2626 |
+
"train_batch_size": 1,
|
2627 |
+
"trial_name": null,
|
2628 |
+
"trial_params": null
|
2629 |
+
}
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|