ksingla025 commited on
Commit
df84072
·
1 Parent(s): 7f5a267

new readme

Browse files
Files changed (1) hide show
  1. readme_template.md +104 -0
readme_template.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-nc-nd-4.0
5
+ library_name: nemo
6
+ datasets:
7
+ - commonvoice
8
+ thumbnail: null
9
+ tags:
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - audio
13
+ - CTC
14
+ - named-entity-recognition
15
+ - emotion-classification
16
+ - Transformer
17
+ - NeMo
18
+ - pytorch
19
+ model-index:
20
+ - name: 1step_ctc_ner_emotion_commonvoice500hrs
21
+ results: []
22
+
23
+ ---
24
+
25
+
26
+ ## ASR+NL Model Overview
27
+
28
+ Recoganize begin and end of digit sequences and also transcribe
29
+
30
+ ## NVIDIA NeMo: Training
31
+
32
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
33
+ ```
34
+ pip install nemo_toolkit['all']
35
+ ```
36
+
37
+ ## How to Use this Model
38
+
39
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
40
+
41
+ ### Automatically instantiate the model
42
+
43
+ ```python
44
+ import nemo.collections.asr as nemo_asr
45
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("ksingla025/1step_ctc_ner_emotion_commonvoice500hrs")
46
+ ```
47
+
48
+ ### Transcribe and tag using Python
49
+ First, let's get a sample
50
+ ```
51
+ wget https://www.dropbox.com/s/fmre0xkl3ism62e/audio.zip?dl=0
52
+ unzip audio.zip
53
+ ```
54
+ Then simply do:
55
+ ```
56
+ asr_model.transcribe(['audio/digits1.wav'])
57
+ ```
58
+
59
+ ### Transcribing many audio files
60
+
61
+ ```shell
62
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="ksingla025/1step_ctc_ner_emotion_commonvoice500hrs" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
63
+ ```
64
+
65
+ ### Input
66
+
67
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
68
+
69
+ ### Output
70
+
71
+ This model provides transcribed speech as a string for a given audio sample.
72
+
73
+ ## Model Architecture
74
+
75
+ <ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
76
+
77
+ ## Training
78
+
79
+ <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
80
+
81
+ ### Datasets
82
+
83
+ <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
84
+
85
+ ## Performance
86
+
87
+ <LIST THE SCORES OF THE MODEL -
88
+ OR
89
+ USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
90
+
91
+ ## Limitations
92
+
93
+ <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
94
+
95
+ Eg:
96
+ Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
97
+
98
+
99
+ ## References
100
+
101
+ <ADD ANY REFERENCES HERE AS NEEDED>
102
+
103
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
104
+