|
import torch |
|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
|
|
format_input = ( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Response:" |
|
) |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
self.pipeline = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_length=256, |
|
) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
text_input = format_input.format(instruction=inputs) |
|
|
|
|
|
if parameters is not None: |
|
prediction = self.pipeline(text_input, **parameters) |
|
else: |
|
prediction = self.pipeline(text_input) |
|
|
|
|
|
output = [ |
|
{"generated_text": pred["generated_text"].split("### Response:")[1].strip()} |
|
for pred in prediction |
|
] |
|
|
|
return output |