ZhafranR commited on
Commit
b837da5
·
verified ·
1 Parent(s): b328146

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +186 -160
README.md CHANGED
@@ -1,199 +1,225 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
  #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - gretelai/synthetic_text_to_sql
6
+ pipeline_tag: text-generation
7
  ---
8
 
9
+ # Model Card for LLaMA 3.2 3B Instruct Text2SQL
 
 
 
 
10
 
11
  ## Model Details
12
 
13
  ### Model Description
14
 
15
+ This is a fine-tuned version of LLaMA 3.2 3B Instruct model, specifically optimized for Text-to-SQL generation tasks. The model has been trained to convert natural language queries into structured SQL commands.
 
 
 
 
 
 
 
 
 
 
16
 
17
+ - **Developed by:** Zhafran Ramadhan
18
+ - **Model type:** Decoder-only Language Model
19
+ - **Language(s):** English - MultiLingual
20
+ - **License:** MIT
21
+ - **Finetuned from model:** LLaMA 3.2 3B Instruct
22
 
23
+ ### Model Sources
24
+ - **Repository:** https://wandb.ai/zhafranr/LLaMA_3-2_3B_Instruct_FineTune_Text2SQL
25
+ - **Dataset:** https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
26
 
27
+ ## How to Get Started with the Model
 
 
28
 
29
+ ### Installation
30
+ ```python
31
+ pip install transformers torch
32
+ ```
33
+
34
+ ### Input Format and Usage
35
+ The model expects input in a specific format following this template:
36
+ ```text
37
+ <|begin_of_text|><|start_header_id|>system<|end_header_id|>
38
+
39
+ [System context and database schema]
40
+
41
+ <|eot_id|><|start_header_id|>user<|end_header_id|>
42
+
43
+ [User query]
44
+
45
+ <|eot_id|><|start_header_id|>assistant<|end_header_id|>
46
+ ```
47
+
48
+ ### Basic Usage
49
+ ```python
50
+ from transformers import pipeline
51
+
52
+ # Initialize the pipeline
53
+ generator = pipeline(
54
+ "text-generation",
55
+ model="[YOUR_HUGGINGFACE_MODEL_ID]", # Replace with your model ID
56
+ torch_dtype=torch.float16,
57
+ device_map="auto"
58
+ )
59
+
60
+ def generate_sql_query(context, question):
61
+ # Format the prompt according to the training template
62
+ prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
63
+
64
+ Cutting Knowledge Date: December 2023
65
+ Today Date: 07 Nov 2024
66
+
67
+ You are a specialized SQL query generator focused solely on the provided RAG database. Your tasks are:
68
+ 1. Generate SQL queries based on user requests that are related to querying the RAG database.
69
+ 2. Only output the SQL query itself, without any additional explanation or commentary.
70
+ 3. Use the context provided from the RAG database to craft accurate queries.
71
+
72
+ Context: {context}
73
+ <|eot_id|><|start_header_id|>user<|end_header_id|>
74
+
75
+ {question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
76
+
77
+ response = generator(
78
+ prompt,
79
+ max_length=500,
80
+ num_return_sequences=1,
81
+ temperature=0.1,
82
+ do_sample=True,
83
+ pad_token_id=generator.tokenizer.eos_token_id
84
+ )
85
+
86
+ return response[0]['generated_text']
87
+
88
+ # Example usage
89
+ context = """CREATE TABLE upgrades (id INT, cost FLOAT, type TEXT);
90
+ INSERT INTO upgrades (id, cost, type) VALUES
91
+ (1, 500, 'Insulation'),
92
+ (2, 1000, 'HVAC'),
93
+ (3, 1500, 'Lighting');"""
94
+
95
+ questions = [
96
+ "Find the energy efficiency upgrades with the highest cost and their types.",
97
+ "Show me all upgrades costing less than 1000 dollars.",
98
+ "Calculate the average cost of all upgrades."
99
+ ]
100
+
101
+ for question in questions:
102
+ sql = generate_sql_query(context, question)
103
+ print(f"\nQuestion: {question}")
104
+ print(f"Generated SQL: {sql}\n")
105
+ ```
106
+
107
+ ### Advanced Usage with Custom System Prompt
108
+ ```python
109
+ def generate_sql_with_custom_prompt(context, question, custom_system_prompt=""):
110
+ base_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
111
+
112
+ Cutting Knowledge Date: December 2023
113
+ Today Date: 07 Nov 2024
114
+
115
+ You are a specialized SQL query generator focused solely on the provided RAG database."""
116
+
117
+ full_prompt = f"""{base_prompt}
118
+ {custom_system_prompt}
119
+
120
+ Context: {context}
121
+ <|eot_id|><|start_header_id|>user<|end_header_id|>
122
+
123
+ {question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
124
+
125
+ response = generator(
126
+ full_prompt,
127
+ max_length=500,
128
+ num_return_sequences=1,
129
+ temperature=0.1,
130
+ do_sample=True,
131
+ pad_token_id=generator.tokenizer.eos_token_id
132
+ )
133
+
134
+ return response[0]['generated_text']
135
+ ```
136
+
137
+ ### Best Practices
138
+ 1. **Input Formatting**:
139
+ - Always include the special tokens (<|begin_of_text|>, <|eot_id|>, etc.)
140
+ - Provide complete database schema in context
141
+ - Keep questions clear and focused on data retrieval
142
+
143
+ 2. **Parameter Configuration**:
144
+ - Use temperature=0.1 for consistent SQL generation
145
+ - Adjust max_length based on expected query complexity
146
+ - Enable do_sample for more natural completions
147
+
148
+ 3. **Context Management**:
149
+ - Include relevant table schemas
150
+ - Provide sample data when needed
151
+ - Keep context concise but complete
152
+
153
  ## Uses
154
 
 
 
155
  ### Direct Use
156
+ The model is designed for converting natural language questions into SQL queries. It can be used for:
157
+ - Database query generation from natural language
158
+ - SQL query assistance
159
+ - Data analysis automation
 
 
 
 
 
 
160
 
161
  ### Out-of-Scope Use
162
+ - Production deployment without human validation
163
+ - Critical decision-making without human oversight
164
+ - Direct database execution without query validation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
  ## Training Details
167
 
168
  ### Training Data
169
+ - Dataset: gretelai/synthetic_text_to_sql
170
+ - Data preprocessing: Standard text-to-SQL formatting
 
 
171
 
172
  ### Training Procedure
173
 
 
 
 
 
 
 
 
174
  #### Training Hyperparameters
175
+ - **Total Steps:** 4,149
176
+ - **Final Training Loss:** 0.1168
177
+ - **Evaluation Loss:** 0.2125
178
+ - **Learning Rate:** Dynamic with final LR = 0
179
+ - **Epochs:** 2.99
180
+ - **Gradient Norm:** 1.3121
181
+
182
+ #### Performance Metrics
183
+ - **Training Samples/Second:** 6.291
184
+ - **Evaluation Samples/Second:** 19.325
185
+ - **Steps/Second:** 3.868
186
+ - **Total FLOPS:** 1.92e18
187
+
188
+ #### Training Infrastructure
189
+ - **Hardware:** Single NVIDIA H100 GPU
190
+ - **Training Duration:** 5-6 hours
191
+ - **Total Runtime:** 16,491.75 seconds
192
+ - **Model Preparation Time:** 0.0051 seconds
193
 
194
  ## Evaluation
195
 
196
+ ### Metrics
197
+ The model's performance was tracked using several key metrics:
198
+ - **Training Loss:** Started at ~1.2, converged to 0.1168
199
+ - **Evaluation Loss:** 0.2125
200
+ - **Processing Efficiency:** 19.325 samples per second during evaluation
 
 
201
 
202
+ ### Results Summary
203
+ - Achieved stable convergence after ~4000 steps
204
+ - Maintained consistent performance metrics throughout training
205
+ - Shows good balance between training and evaluation loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206
 
207
  ## Environmental Impact
208
 
209
+ - **Hardware Type:** NVIDIA H100 GPU
210
+ - **Hours used:** ~6 hours
211
+ - **Training Location:** [User to specify]
212
 
213
+ ## Technical Specifications
 
 
 
 
 
 
 
 
 
 
214
 
215
  ### Compute Infrastructure
216
+ - **GPU:** NVIDIA H100
217
+ - **Training Duration:** 5-6 hours
218
+ - **Total Steps:** 4,149
219
+ - **FLOPs Utilized:** 1.92e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
 
221
  ## Model Card Contact
222
+ [Contact information to be added by Zhafran Ramadhan]
223
 
224
+ ---
225
+ *Note: This model card follows the guidelines set by the ML community for responsible AI development and deployment.*