Update README.md
Browse files
README.md
CHANGED
@@ -7,4 +7,61 @@ tags:
|
|
7 |
|
8 |
https://huggingface.co/CIDAS/clipseg-rd64 with ONNX weights to be compatible with Transformers.js.
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
7 |
|
8 |
https://huggingface.co/CIDAS/clipseg-rd64 with ONNX weights to be compatible with Transformers.js.
|
9 |
|
10 |
+
## Usage (Transformers.js)
|
11 |
+
|
12 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
13 |
+
```bash
|
14 |
+
npm i @xenova/transformers
|
15 |
+
```
|
16 |
+
|
17 |
+
**Example:** Perform zero-shot image segmentation with a `CLIPSegForImageSegmentation` model.
|
18 |
+
|
19 |
+
```js
|
20 |
+
import { AutoTokenizer, AutoProcessor, CLIPSegForImageSegmentation, RawImage } from '@xenova/transformers';
|
21 |
+
|
22 |
+
// Load tokenizer, processor, and model
|
23 |
+
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clipseg-rd64');
|
24 |
+
const processor = await AutoProcessor.from_pretrained('Xenova/clipseg-rd64');
|
25 |
+
const model = await CLIPSegForImageSegmentation.from_pretrained('Xenova/clipseg-rd64');
|
26 |
+
|
27 |
+
// Run tokenization
|
28 |
+
const texts = ['a glass', 'something to fill', 'wood', 'a jar'];
|
29 |
+
const text_inputs = tokenizer(texts, { padding: true, truncation: true });
|
30 |
+
|
31 |
+
// Read image and run processor
|
32 |
+
const image = await RawImage.read('https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true');
|
33 |
+
const image_inputs = await processor(image);
|
34 |
+
|
35 |
+
// Run model with both text and pixel inputs
|
36 |
+
const { logits } = await model({ ...text_inputs, ...image_inputs });
|
37 |
+
// logits: Tensor {
|
38 |
+
// dims: [4, 352, 352],
|
39 |
+
// type: 'float32',
|
40 |
+
// data: Float32Array(495616)[ ... ],
|
41 |
+
// size: 495616
|
42 |
+
// }
|
43 |
+
```
|
44 |
+
|
45 |
+
You can visualize the predictions as follows:
|
46 |
+
```js
|
47 |
+
// Visualize images
|
48 |
+
const preds = logits
|
49 |
+
.unsqueeze_(1)
|
50 |
+
.sigmoid_()
|
51 |
+
.mul_(255)
|
52 |
+
.round_()
|
53 |
+
.to('uint8');
|
54 |
+
|
55 |
+
for (let i = 0; i < preds.dims[0]; ++i) {
|
56 |
+
const img = RawImage.fromTensor(preds[i]);
|
57 |
+
img.save(`prediction_${i}.png`);
|
58 |
+
}
|
59 |
+
```
|
60 |
+
|
61 |
+
| Original | `"a glass"` | `"something to fill"` | `"wood"` | `"a jar"` |
|
62 |
+
|--------|--------|--------|--------|--------|
|
63 |
+
| ![image](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/B4wAIseP3SokRd7Flu1Y9.png) | ![prediction_0](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/5NhLTZH2jM8k98n62dWRx.png) | ![prediction_1](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9PjQB8QRE8IUN1OhEK30q.png) | ![prediction_2](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/mAuKCId-iwMbKPi6ee3Zk.png) | ![prediction_3](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/m0HP13L2lzalLsbXtrmbc.png) |
|
64 |
+
|
65 |
+
---
|
66 |
+
|
67 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|