Xenova HF staff commited on
Commit
4db1b1b
·
1 Parent(s): a373653

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -1,3 +1,67 @@
1
  ---
2
  library_name: transformers.js
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers.js
3
+ ---
4
+
5
+ https://huggingface.co/microsoft/speecht5_hifigan with ONNX weights to be compatible with Transformers.js.
6
+
7
+
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
11
+ ```bash
12
+ npm i @xenova/transformers
13
+ ```
14
+
15
+ **Example:** Generate speech from text.
16
+ ```js
17
+ import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@xenova/transformers';
18
+
19
+ // Load the tokenizer and processor
20
+ const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts');
21
+ const processor = await AutoProcessor.from_pretrained('Xenova/speecht5_tts');
22
+
23
+ // Load the models
24
+ // NOTE: We use the unquantized versions as they are more accurate
25
+ const model = await SpeechT5ForTextToSpeech.from_pretrained('Xenova/speecht5_tts', { quantized: false });
26
+ const vocoder = await SpeechT5HifiGan.from_pretrained('Xenova/speecht5_hifigan', { quantized: false });
27
+
28
+ // Load speaker embeddings from URL
29
+ const speaker_embeddings_data = new Float32Array(
30
+ await (await fetch('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin')).arrayBuffer()
31
+ );
32
+ const speaker_embeddings = new Tensor(
33
+ 'float32',
34
+ speaker_embeddings_data,
35
+ [1, speaker_embeddings_data.length]
36
+ )
37
+
38
+ // Run tokenization
39
+ const { input_ids } = tokenizer('Hello, my dog is cute');
40
+
41
+ // Generate waveform
42
+ const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder });
43
+ console.log(waveform)
44
+ // Tensor {
45
+ // dims: [ 26112 ],
46
+ // type: 'float32',
47
+ // size: 26112,
48
+ // data: Float32Array(26112) [ -0.00043630177970044315, -0.00018082228780258447, ... ],
49
+ // }
50
+ ```
51
+
52
+ Optionally, save the audio to a wav file (Node.js):
53
+ ```js
54
+ // Write to file (Node.js)
55
+ import wavefile from 'wavefile';
56
+ import fs from 'fs';
57
+
58
+ const wav = new wavefile.WaveFile();
59
+ wav.fromScratch(1, processor.feature_extractor.config.sampling_rate, '32f', waveform.data);
60
+ fs.writeFileSync('out.wav', wav.toBuffer());
61
+ ```
62
+
63
+ <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/on1ij9Y269ne9zlYN9mdb.wav"></audio>
64
+
65
+ ---
66
+
67
+ Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).