File size: 16,341 Bytes
46280bb 769e287 46280bb 51e5ad2 46280bb 769e287 51e5ad2 46280bb 51e5ad2 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 769e287 51e5ad2 769e287 51e5ad2 46280bb 769e287 46280bb 769e287 46280bb 769e287 46280bb 51e5ad2 46280bb 51e5ad2 d6e13c5 51e5ad2 d6e13c5 46280bb 769e287 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 46280bb 51e5ad2 46280bb 51e5ad2 46280bb 51e5ad2 46280bb 51e5ad2 46280bb 51e5ad2 769e287 d6e13c5 46280bb 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 46280bb 51e5ad2 46280bb 51e5ad2 46280bb 51e5ad2 46280bb 51e5ad2 46280bb 51e5ad2 d6e13c5 51e5ad2 d6e13c5 51e5ad2 d6e13c5 46280bb 51e5ad2 d6e13c5 46280bb 51e5ad2 769e287 51e5ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import copy
import os
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from torch.nn.utils.rnn import pad_sequence
import warnings
from torch import Tensor, nn
from transformers import (
PreTrainedModel,
PreTrainedTokenizer,
Blip2VisionModel,
Blip2QFormerModel,
Blip2Model,
Blip2PreTrainedModel,
Blip2ForConditionalGeneration,
GenerationConfig,
)
from transformers.models.blip_2.modeling_blip_2 import (
Blip2ForConditionalGenerationModelOutput,
)
from transformers.utils import logging
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
from .modeling_chatglm import (
ChatGLMForConditionalGeneration,
InvalidScoreLogitsProcessor,
)
from .configuration_blip2chatglm import Blip2ChatGLMConfig
logger = logging.get_logger(__name__)
class Blip2ChatGLMForConditionalGeneration(Blip2ForConditionalGeneration):
config_class = Blip2ChatGLMConfig
def __init__(self, config: Blip2ChatGLMConfig):
Blip2PreTrainedModel.__init__(self, config)
# NOTE: we only initialize Blip2PreTrainedModel
# directly call super().__init__() will cause error since ChatGLM cannot be found by AutoModel
self.vision_model = Blip2VisionModel(config.vision_config)
self.query_tokens = nn.Parameter(
torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)
)
self.qformer = Blip2QFormerModel(config.qformer_config)
self.language_projection = nn.Linear(
config.qformer_config.hidden_size, config.text_config.hidden_size
)
self.language_model = ChatGLMForConditionalGeneration(config.text_config)
# Initialize weights and apply final processing
# self.post_init()
def setup_dtype(self, vision_encoder_dtype: str = "fp32", lm_dtype: str = "fp16"):
if vision_encoder_dtype == "fp32":
self.vision_model = self.vision_model.float()
elif vision_encoder_dtype == "fp16":
self.vision_model = self.vision_model.half()
else:
raise NotImplementedError(
f"Unsupported vision_encoder_dtype: {vision_encoder_dtype}"
)
if lm_dtype == "fp32":
self.language_model = self.language_model.float()
elif lm_dtype == "fp16":
self.language_model = self.language_model.half()
elif lm_dtype == "int4":
self.language_model = self.language_model.half().quantize(4)
elif lm_dtype == "int8":
self.language_model = self.language_model.half().quantize(8)
else:
raise NotImplementedError(f"Unsupported lm_dtype: {lm_dtype}")
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.FloatTensor,
image_slot_offset: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Blip2ForConditionalGenerationModelOutput]:
"""_summary_
Args:
pixel_values (torch.FloatTensor): _description_
input_ids (torch.FloatTensor): input_ids[:, :num_query_tokens] should be filled with tokenizer.unk_token_id
image_slot_offset (Optional[torch.LongTensor], optional): if not set, all vtokens are placed as prefix (image_slot_offset = torch.zeros(bsz)). Defaults to None.
attention_mask (Optional[torch.LongTensor], optional): _description_. Defaults to None.
output_attentions (Optional[bool], optional): _description_. Defaults to None.
output_hidden_states (Optional[bool], optional): _description_. Defaults to None.
labels (Optional[torch.LongTensor], optional): _description_. Defaults to None.
return_dict (Optional[bool], optional): _description_. Defaults to None.
Returns:
Union[Tuple, Blip2ForConditionalGenerationModelOutput]: _description_
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# step 1: forward the images through the vision encoder,
# to get image embeddings of shape (batch_size, seq_len, hidden_size)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[0]
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
image_attention_mask = torch.ones(
image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
query_output = query_outputs[0]
# step 3: use the language model, conditioned on the query outputs and the prompt
language_model_inputs = self.language_projection(query_output)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
if image_slot_offset is None:
# image as prefix
# update data to avoid inplace operation of leaf Variable
inputs_embeds.data[
:, : self.config.num_query_tokens, :
] = language_model_inputs
else:
for i, offset in enumerate(image_slot_offset):
inputs_embeds.data[
i, offset : offset + self.config.num_query_tokens, :
] = language_model_inputs[i]
outputs = self.language_model(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
# we compute the loss here since we need to take into account the sequence length of the query embeds
if labels is not None:
logits = logits[:, -labels.size(1) :, :]
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous().to(logits.device)
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction="mean")
loss = loss_fct(
shift_logits.view(-1, self.config.text_config.vocab_size),
shift_labels.view(-1),
)
if not return_dict:
output = (logits, vision_outputs, query_outputs, outputs)
return ((loss,) + output) if loss is not None else output
return Blip2ForConditionalGenerationModelOutput(
loss=loss,
logits=logits,
vision_outputs=vision_outputs,
qformer_outputs=query_outputs,
language_model_outputs=outputs,
)
def prepare_inputs_for_chat(
self,
tokenizer: PreTrainedTokenizer,
batch_messages: List[List[Tuple[str, str, List[Tuple[torch.Tensor, int]]]]],
max_length: int,
user_role: str = "问",
bot_role: str = "答",
):
device = self.device
nvtokens = self.config.num_query_tokens
# 1. Prepare token ids
all_images = []
all_image_slots = []
all_input_ids = []
for messages in batch_messages:
images = []
image_slots = []
input_ids = []
round_roles = [set()]
for role, qtext, qimgs in messages:
if role in round_roles[-1]:
# a new round (not the first round)
input_ids += tokenizer(
f"\n[Round {len(round_roles)}]\n{role}:",
add_special_tokens=False,
).input_ids
round_roles.append({role})
else:
round_roles[-1].add(role)
input_ids += tokenizer(
# For first role, no new line
f"\n{role}:" if len(input_ids) != 0 else f"{role}:", add_special_tokens=False
).input_ids
cur_index = 0
for qimg, img_idx in qimgs:
if img_idx > cur_index:
input_ids += tokenizer(
qtext[cur_index:img_idx], add_special_tokens=False
).input_ids
cur_index = img_idx
# image slot, embedding will be replaced by image embeddings
image_slots.append(len(input_ids))
input_ids += [tokenizer.unk_token_id] * nvtokens
images.append(qimg)
input_ids += tokenizer(
qtext[cur_index:], add_special_tokens=False
).input_ids
if len(round_roles) == 1:
# only 1 round
if len(round_roles[0]) == 1 and user_role in round_roles[0]:
# only user role
input_ids += tokenizer("").input_ids
else:
input_ids += tokenizer(f"\n{bot_role}:").input_ids
else:
# add tag for round 0
input_ids = (
tokenizer(f"[Round 0]\n", add_special_tokens=False).input_ids
+ input_ids
)
input_ids += tokenizer(f"\n{bot_role}:").input_ids
if len(input_ids) >= max_length:
image_slots_after_truncate = []
images_after_truncate = []
truncate_index = len(input_ids) - max_length
for image_slot, image in zip(image_slots, images):
# truncate from left
if len(input_ids) - image_slot < max_length:
image_slots_after_truncate.append(image_slot)
images_after_truncate.append(image)
elif len(input_ids) - (image_slot + nvtokens) < max_length:
# in-contact image slot is not allowed
truncate_index = max(truncate_index, image_slot + nvtokens)
for i, image_slot in enumerate(image_slots_after_truncate):
image_slots_after_truncate[i] = image_slot - truncate_index
input_ids = input_ids[truncate_index:]
image_slots = image_slots_after_truncate
images = images_after_truncate
# print(tokenizer.convert_ids_to_tokens(input_ids))
all_images.extend(images)
all_image_slots.append(image_slots)
all_input_ids.append(input_ids)
# 2. Prepare image embeddings
if len(all_images) != 0:
vision_outputs = self.vision_model.forward(torch.cat(all_images, dim=0))
all_image_embeds = vision_outputs[0]
indices_or_sections = [len(chunk) for chunk in all_image_slots]
indices_or_sections = np.cumsum(indices_or_sections)
all_vtokens = []
# TODO: qformer not batched
for image_embeds in torch.tensor_split(
all_image_embeds, tuple(indices_or_sections)
):
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
device
)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_outputs = self.qformer.forward(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
)
query_output = query_outputs[0]
all_vtokens.append(self.language_projection(query_output))
else:
all_vtokens = None
# 3. Place image embeddings into slots
input_ids = (
torch.ones(
(len(all_input_ids), max(len(ids) for ids in all_input_ids)),
dtype=torch.long,
)
* tokenizer.pad_token_id
)
for i, ids in enumerate(all_input_ids):
# pad left
input_ids[i][-len(ids) :] = torch.as_tensor(ids, dtype=torch.long)
input_ids = input_ids.to(device)
inputs_embeds = self.language_model.transformer.word_embeddings(input_ids)
if all_vtokens is not None:
for i, (image_slots, vtokens) in enumerate(
zip(all_image_slots, all_vtokens)
):
for slot, vimg in zip(image_slots, vtokens):
inputs_embeds[i][slot : slot + nvtokens, :] = vimg
return input_ids, inputs_embeds
@torch.no_grad()
def batch_chat(
self,
tokenizer: PreTrainedTokenizer,
batch_messages: List[List[Tuple[str, str, List[Tuple[torch.Tensor, int]]]]],
max_length: int = 2048,
num_beams=1,
do_sample=True,
top_p=0.7,
temperature=0.95,
user_role: str = "问",
bot_role: str = "答",
**kwargs,
):
input_ids, inputs_embeds = self.prepare_inputs_for_chat(
tokenizer=tokenizer,
batch_messages=batch_messages,
max_length=max_length,
user_role=user_role,
bot_role=bot_role,
)
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
gen_kwargs = {
"max_length": max_length,
"num_beams": num_beams,
"do_sample": do_sample,
"top_p": top_p,
"temperature": temperature,
"logits_processor": logits_processor,
**kwargs,
}
outputs = self.language_model.generate(
input_ids=input_ids, inputs_embeds=inputs_embeds, **gen_kwargs
)
responses = []
for i, output in enumerate(outputs.tolist()):
output = output[len(input_ids[i]) :]
response = tokenizer.decode(output)
responses.append(self.language_model.process_response(response))
return responses
@torch.no_grad()
def stream_chat(
self,
tokenizer: PreTrainedTokenizer,
messages: List[Tuple[str, str, List[Tuple[torch.Tensor, int]]]],
num_beams=5,
max_length=512,
top_p=0.9,
do_sample=True,
temperature=1,
user_role: str = "问",
bot_role: str = "答",
**kwargs,
):
input_ids, inputs_embeds = self.prepare_inputs_for_chat(
tokenizer=tokenizer,
batch_messages=[messages],
max_length=max_length,
user_role=user_role,
bot_role=bot_role,
)
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
gen_kwargs = {
"max_length": max_length,
"num_beams": num_beams,
"do_sample": do_sample,
"top_p": top_p,
"temperature": temperature,
"logits_processor": logits_processor,
**kwargs,
}
for outputs in self.language_model.stream_generate(
input_ids=input_ids, inputs_embeds=inputs_embeds, **gen_kwargs
):
outputs = outputs.tolist()[0][len(input_ids[0]) :]
response = tokenizer.decode(outputs)
response = self.language_model.process_response(response)
yield response
|