File size: 52,343 Bytes
3e66b7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "be94e6d6-4096-4d1a-aa58-5afd89f33bff",
   "metadata": {},
   "source": [
    "# Fine-tuning Sandbox\n",
    "\n",
    "Code authored by: Shawhin Talebi <br>\n",
    "Blog link: https://medium.com/towards-data-science/fine-tuning-large-language-models-llms-23473d763b91"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4ef8ea85-d04d-4217-99a3-21c446bf2ffa",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From C:\\Users\\Administrator\\AppData\\Roaming\\Python\\Python39\\site-packages\\keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "from datasets import load_dataset, DatasetDict, Dataset\n",
    "\n",
    "from transformers import (\n",
    "    AutoTokenizer,\n",
    "    AutoConfig, \n",
    "    AutoModelForSequenceClassification,\n",
    "    DataCollatorWithPadding,\n",
    "    TrainingArguments,\n",
    "    Trainer)\n",
    "# PEFT的全称是Parameter-Efficient Fine-Tuning,是transform开发的一个参数高效微调的库\n",
    "from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig\n",
    "import evaluate\n",
    "import torch\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa6a4484-07d8-49dd-81ef-672105f53ebe",
   "metadata": {},
   "source": [
    "### dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "fa9722d3-0609-4aea-9585-9aa2cfc1fc9a",
   "metadata": {
    "jupyter": {
     "source_hidden": true
    }
   },
   "outputs": [],
   "source": [
    "# # how dataset was generated\n",
    "\n",
    "# # load imdb data\n",
    "# imdb_dataset = load_dataset(\"imdb\")\n",
    "\n",
    "# # define subsample size\n",
    "# N = 1000 \n",
    "# # generate indexes for random subsample\n",
    "# rand_idx = np.random.randint(24999, size=N) \n",
    "\n",
    "# # extract train and test data\n",
    "# x_train = imdb_dataset['train'][rand_idx]['text']\n",
    "# y_train = imdb_dataset['train'][rand_idx]['label']\n",
    "\n",
    "# x_test = imdb_dataset['test'][rand_idx]['text']\n",
    "# y_test = imdb_dataset['test'][rand_idx]['label']\n",
    "\n",
    "# # create new dataset\n",
    "# dataset = DatasetDict({'train':Dataset.from_dict({'label':y_train,'text':x_train}),\n",
    "#                              'validation':Dataset.from_dict({'label':y_test,'text':x_test})})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "de226234-c521-4577-802c-0e7079ef4364",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['label', 'text'],\n",
       "        num_rows: 1000\n",
       "    })\n",
       "    validation: Dataset({\n",
       "        features: ['label', 'text'],\n",
       "        num_rows: 1000\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['label', 'text'],\n",
       "        num_rows: 1000\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 加载数据集 训练 验证 测试\n",
    "dataset = load_dataset('shawhin/imdb-truncated')\n",
    "dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d5625faa-5fea-4334-bd38-b77de983d8a8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.5"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 得出训练集标签的平均值\n",
    "np.array(dataset['train']['label']).sum()/len(dataset['train']['label'])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3644c68d-9adf-48a4-90a2-8fd89555a302",
   "metadata": {},
   "source": [
    "### model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a60dd1fe-8144-4678-b018-20891e49237a",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "model_checkpoint = 'distilbert-base-uncased'\n",
    "\n",
    "# 类别的映射关系\n",
    "id2label = {0: \"Negative\", 1: \"Positive\"}\n",
    "label2id = {\"Negative\":0, \"Positive\":1}\n",
    "\n",
    "# 加载预训练的权重 num_labels指明是二分类任务 model_checkpoint 预训练模型的名称\n",
    "model = AutoModelForSequenceClassification.from_pretrained(\n",
    "    model_checkpoint, num_labels=2, id2label=id2label, label2id=label2id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "853002f8-d39c-4bc4-8d07-e44a47de3b47",
   "metadata": {},
   "outputs": [],
   "source": [
    "# display architecture\n",
    "model = model.cuda()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4bc98609-873d-455c-bac4-155632cda484",
   "metadata": {},
   "source": [
    "### 预处理数据"
   ]
  },
  {
   "cell_type": "raw",
   "id": "93e728f3-9e12-400d-950e-f7f2e29fe19e",
   "metadata": {},
   "source": [
    "add_prefix_space参数告诉 tokenizer 在处理单词和标点符号之间添加一个前缀空格 前缀空格(表示为 Ġ)\n",
    "# 原始句子\n",
    "sentence = \"Hello, world!\"\n",
    "['ĠHello', ',', 'Ġworld', '!']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "7fe08707-657f-4e66-aa72-84899c54bf8d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 创建分词器\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)\n",
    "\n",
    "# 判断是否有填充标记 通过 resize_token_embeddings 方法调整模型的 token embeddings,以包含新添加的 pad token。\n",
    "if tokenizer.pad_token is None:\n",
    "    tokenizer.add_special_tokens({'pad_token': '[PAD]'})\n",
    "    model.resize_token_embeddings(len(tokenizer))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "20f4adb9-ce8f-4f54-9b94-300c9daae1b8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 创建分词器函数\n",
    "def tokenize_function(examples):\n",
    "    # 提取文本\n",
    "    text = examples[\"text\"]\n",
    "\n",
    "    # 设置 tokenizer 的截断位置为左侧。这意味着如果文本超过指定的 max_length,则在左侧截断。这是为了确保重要的文本内容被保留下来。\n",
    "    tokenizer.truncation_side = \"left\"\n",
    "    tokenized_inputs = tokenizer(\n",
    "        text,\n",
    "        # 返回numpy 类型\n",
    "        return_tensors=\"np\",\n",
    "        # 是否进行文本截断\n",
    "        truncation=True,\n",
    "        max_length=512\n",
    "    )\n",
    "\n",
    "    return tokenized_inputs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "b7600bcd-7e93-4fb4-bd8d-ffc76bed1ac2",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c029f605df0e4e3c9484aa97af255052",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/1000 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['label', 'text', 'input_ids', 'attention_mask'],\n",
       "        num_rows: 1000\n",
       "    })\n",
       "    validation: Dataset({\n",
       "        features: ['label', 'text', 'input_ids', 'attention_mask'],\n",
       "        num_rows: 1000\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['label', 'text', 'input_ids', 'attention_mask'],\n",
       "        num_rows: 1000\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# tokenize training and validation datasets\n",
    "tokenized_dataset = dataset.map(tokenize_function, batched=True)\n",
    "tokenized_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "3f8e85f9-1804-4f49-a783-4da59580ea1e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 创建数据收集器\n",
    "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3cd9a120-580d-470c-a981-7c7e22604865",
   "metadata": {},
   "source": [
    "### evaluation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "2a894819-2e9c-4a53-9790-32130c182bca",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using the latest cached version of the module from C:\\Users\\Administrator\\.cache\\huggingface\\modules\\evaluate_modules\\metrics\\evaluate-metric--accuracy\\f887c0aab52c2d38e1f8a215681126379eca617f96c447638f751434e8e65b14 (last modified on Fri Mar 15 09:54:33 2024) since it couldn't be found locally at evaluate-metric--accuracy, or remotely on the Hugging Face Hub.\n"
     ]
    }
   ],
   "source": [
    "# import accuracy evaluation metric\n",
    "accuracy = evaluate.load(\"accuracy\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "c07b9be2-a3f6-4b38-b9e8-6a2bc8aa945a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# define an evaluation function to pass into trainer later\n",
    "def compute_metrics(p):\n",
    "    predictions, labels = p\n",
    "    predictions = np.argmax(predictions, axis=1)\n",
    "    # 计算预测结果和真实标签 返回准确率\n",
    "    return {\"accuracy\": accuracy.compute(predictions=predictions, references=labels)}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "47500035-a555-46e0-83dc-440586d96b7e",
   "metadata": {},
   "source": [
    "### Apply untrained model to text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "8f3761c1-a297-45c8-882e-d74856259810",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Untrained model predictions:\n",
      "----------------------------\n",
      "I'm sorry. - Negative\n",
      "You areedespicable person - Negative\n",
      "Better than the first one. - Negative\n",
      "This is not worth watching even once. - Negative\n",
      "This one is a pass. - Negative\n"
     ]
    }
   ],
   "source": [
    "# define list of examples\n",
    "text_list = [\"I'm sorry.\", \"You areedespicable person\", \"Better than the first one.\", \"This is not worth watching even once.\", \"This one is a pass.\"]\n",
    "\n",
    "print(\"Untrained model predictions:\")\n",
    "print(\"----------------------------\")\n",
    "for text in text_list:\n",
    "    # 将文本转化为可以理解的编码 并返回pytorch张量\n",
    "    inputs = tokenizer.encode(text, return_tensors=\"pt\")\n",
    "    # 计算对数\n",
    "    logits = model(inputs.cuda()).logits\n",
    "    # convert logits to label\n",
    "    predictions = torch.argmax(logits)\n",
    "\n",
    "    print(text + \" - \" + id2label[predictions.tolist()])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff356f78-c9fd-4f2b-8f5b-097cf29c1c08",
   "metadata": {},
   "source": [
    "### Train model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "e4dde538-cd7f-4ab5-a96d-c30f3003822e",
   "metadata": {},
   "outputs": [],
   "source": [
    "peft_config = LoraConfig(task_type=\"SEQ_CLS\", # 序列分类任务\n",
    "                        r = 4, # 递归深度\n",
    "                        lora_alpha = 32, # alpha 值表示 LORA 模块的影响更大。\n",
    "                        lora_dropout = 0.01,\n",
    "                        target_modules = ['q_lin'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "f1391303-1e16-4d5c-b2b4-799997eff9f8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type='SEQ_CLS', inference_mode=False, r=4, target_modules={'q_lin'}, lora_alpha=32, lora_dropout=0.01, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "peft_config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "3e0d9408-9fc4-4bd3-8d35-4d8217fe01e2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "trainable params: 628,994 || all params: 67,584,004 || trainable%: 0.9306847223789819\n"
     ]
    }
   ],
   "source": [
    "# 对模型进行配置\n",
    "model = get_peft_model(model, peft_config)\n",
    "model.print_trainable_parameters()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "5db78059-e5ae-4807-89db-b58ef6abedd1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# hyperparameters\n",
    "lr = 1e-3\n",
    "batch_size = 4\n",
    "num_epochs = 10"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "9244ed55-65a4-4c66-8388-55efd87bceb8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# define training arguments\n",
    "training_args = TrainingArguments(\n",
    "    output_dir= model_checkpoint + \"-lora-text-classification\",\n",
    "    learning_rate=lr,\n",
    "    per_device_train_batch_size=batch_size,\n",
    "    per_device_eval_batch_size=batch_size,\n",
    "    num_train_epochs=num_epochs,\n",
    "    weight_decay=0.01, #  权重衰减,一种正则化技术,用于控制模型参数的大小。\n",
    "    evaluation_strategy=\"epoch\",\n",
    "    save_strategy=\"epoch\",\n",
    "    load_best_model_at_end=True, # 是否在训练结束加载最佳模型\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6e21aa23-a366-4606-b13b-ad22e4639272",
   "metadata": {},
   "source": [
    "### "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "fc8bc705-5dd7-4305-a797-399b2b0fa2c7",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "D:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\accelerate\\accelerator.py:432: FutureWarning: Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: dict_keys(['dispatch_batches', 'split_batches', 'even_batches', 'use_seedable_sampler']). Please pass an `accelerate.DataLoaderConfiguration` instead: \n",
      "dataloader_config = DataLoaderConfiguration(dispatch_batches=None, split_batches=False, even_batches=True, use_seedable_sampler=True)\n",
      "  warnings.warn(\n",
      "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33m1321416285\u001b[0m (\u001b[33mxuuuu\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "wandb version 0.16.4 is available!  To upgrade, please run:\n",
       " $ pip install wandb --upgrade"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "Tracking run with wandb version 0.15.12"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "Run data is saved locally in <code>D:\\software\\Anaconda\\jupyterfile\\AIfinetuning\\wandb\\run-20240315_211852-07azjtzv</code>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "Syncing run <strong><a href='https://wandb.ai/xuuuu/huggingface/runs/07azjtzv' target=\"_blank\">fast-firefly-2</a></strong> to <a href='https://wandb.ai/xuuuu/huggingface' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       " View project at <a href='https://wandb.ai/xuuuu/huggingface' target=\"_blank\">https://wandb.ai/xuuuu/huggingface</a>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       " View run at <a href='https://wandb.ai/xuuuu/huggingface/runs/07azjtzv' target=\"_blank\">https://wandb.ai/xuuuu/huggingface/runs/07azjtzv</a>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='2500' max='2500' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [2500/2500 02:44, Epoch 10/10]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "      <th>Accuracy</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>1</td>\n",
       "      <td>No log</td>\n",
       "      <td>0.438809</td>\n",
       "      <td>{'accuracy': 0.855}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2</td>\n",
       "      <td>0.427600</td>\n",
       "      <td>0.648398</td>\n",
       "      <td>{'accuracy': 0.859}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3</td>\n",
       "      <td>0.427600</td>\n",
       "      <td>0.637398</td>\n",
       "      <td>{'accuracy': 0.877}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4</td>\n",
       "      <td>0.218100</td>\n",
       "      <td>0.689158</td>\n",
       "      <td>{'accuracy': 0.889}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>5</td>\n",
       "      <td>0.218100</td>\n",
       "      <td>0.774748</td>\n",
       "      <td>{'accuracy': 0.897}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>6</td>\n",
       "      <td>0.073100</td>\n",
       "      <td>0.846054</td>\n",
       "      <td>{'accuracy': 0.887}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>7</td>\n",
       "      <td>0.073100</td>\n",
       "      <td>0.946100</td>\n",
       "      <td>{'accuracy': 0.894}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>8</td>\n",
       "      <td>0.015500</td>\n",
       "      <td>0.941895</td>\n",
       "      <td>{'accuracy': 0.901}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>9</td>\n",
       "      <td>0.015500</td>\n",
       "      <td>0.994161</td>\n",
       "      <td>{'accuracy': 0.898}</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>10</td>\n",
       "      <td>0.006700</td>\n",
       "      <td>0.999837</td>\n",
       "      <td>{'accuracy': 0.897}</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Trainer is attempting to log a value of \"{'accuracy': 0.855}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-250 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.859}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-500 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.877}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-750 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.889}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-1000 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.897}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-1250 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.887}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-1500 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.894}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-1750 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.901}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-2000 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.898}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-2250 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n",
      "Trainer is attempting to log a value of \"{'accuracy': 0.897}\" of type <class 'dict'> for key \"eval/accuracy\" as a scalar. This invocation of Tensorboard's writer.add_scalar() is incorrect so we dropped this attribute.\n",
      "Checkpoint destination directory distilbert-base-uncased-lora-text-classification\\checkpoint-2500 already exists and is non-empty. Saving will proceed but saved results may be invalid.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "TrainOutput(global_step=2500, training_loss=0.14819346437454223, metrics={'train_runtime': 174.6372, 'train_samples_per_second': 57.262, 'train_steps_per_second': 14.315, 'total_flos': 1112883852759936.0, 'train_loss': 0.14819346437454223, 'epoch': 10.0})"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# creater trainer object\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized_dataset[\"train\"],\n",
    "    eval_dataset=tokenized_dataset[\"validation\"],\n",
    "    tokenizer=tokenizer,\n",
    "    data_collator=data_collator, # this will dynamically pad examples in each batch to be equal length\n",
    "    compute_metrics=compute_metrics, \n",
    ")\n",
    "\n",
    "# train model\n",
    "trainer.train()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f5664d1-9bd2-4ce1-bc24-cab5adf80f49",
   "metadata": {},
   "source": [
    "### Generate prediction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "e5dc029e-1c16-491d-a3f1-715f9e0adf52",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Trained model predictions:\n",
      "--------------------------\n",
      "I'm sorry. - Negative\n",
      "You areedespicable person - Positive\n",
      "Better than the first one. - Positive\n",
      "This is not worth watching even once. - Negative\n",
      "This one is a pass. - Negative\n"
     ]
    }
   ],
   "source": [
    "model.to('cuda') # moving to mps for Mac (can alternatively do 'cpu')\n",
    "\n",
    "print(\"Trained model predictions:\")\n",
    "print(\"--------------------------\")\n",
    "for text in text_list:\n",
    "    inputs = tokenizer.encode(text, return_tensors=\"pt\").to(\"cuda\") # moving to mps for Mac (can alternatively do 'cpu')\n",
    "\n",
    "    logits = model(inputs).logits\n",
    "    predictions = torch.max(logits,1).indices\n",
    "\n",
    "    print(text + \" - \" + id2label[predictions.tolist()[0]])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c084bd9e-f7b1-4979-b753-73335ee0cede",
   "metadata": {},
   "source": [
    "### Optional: push model to hub"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "159eb49a-dd0d-4c9e-b9ab-27e06585fd84",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a0e23e8a27634de78c21c18041cd010f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# option 1: notebook login\n",
    "from huggingface_hub import notebook_login\n",
    "notebook_login() # ensure token gives write access\n",
    "\n",
    "# # option 2: key login\n",
    "# from huggingface_hub import login\n",
    "# write_key = 'hf_' # paste token here\n",
    "# login(write_key)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "09496307-e253-47e3-a46f-3f28a84c89a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "hf_name = 'shawhin' # your hf username or org name\n",
    "model_id = hf_name + \"/\" + model_checkpoint + \"-lora-text-classification\" # you can name the model whatever you want"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "c56ea581-0ea3-45f3-af21-362e9093ee37",
   "metadata": {},
   "outputs": [
    {
     "ename": "HfHubHTTPError",
     "evalue": "403 Client Error: Forbidden for url: https://huggingface.co/shawhin/distilbert-base-uncased-lora-text-classification.git/info/lfs/objects/batch (Request ID: Root=1-65f44b6d-3a7059390bd0f46b3618a6e6;b93e4a6f-c6a2-4179-8d62-ec4b3235048e)\n\nAuthorization error.",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mHTTPError\u001b[0m                                 Traceback (most recent call last)",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\utils\\_errors.py:304\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m    303\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 304\u001b[0m     \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    305\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\requests\\models.py:943\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    942\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[1;32m--> 943\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
      "\u001b[1;31mHTTPError\u001b[0m: 403 Client Error: Forbidden for url: https://huggingface.co/shawhin/distilbert-base-uncased-lora-text-classification.git/info/lfs/objects/batch",
      "\nThe above exception was the direct cause of the following exception:\n",
      "\u001b[1;31mHfHubHTTPError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[23], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_id\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\transformers\\utils\\hub.py:894\u001b[0m, in \u001b[0;36mPushToHubMixin.push_to_hub\u001b[1;34m(self, repo_id, use_temp_dir, commit_message, private, token, max_shard_size, create_pr, safe_serialization, revision, commit_description, tags, **deprecated_kwargs)\u001b[0m\n\u001b[0;32m    891\u001b[0m \u001b[38;5;66;03m# Update model card if needed:\u001b[39;00m\n\u001b[0;32m    892\u001b[0m model_card\u001b[38;5;241m.\u001b[39msave(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(work_dir, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mREADME.md\u001b[39m\u001b[38;5;124m\"\u001b[39m))\n\u001b[1;32m--> 894\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_upload_modified_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    895\u001b[0m \u001b[43m    \u001b[49m\u001b[43mwork_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    896\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    897\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfiles_timestamps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    898\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_message\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    899\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    900\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    901\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    902\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcommit_description\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_description\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    903\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\transformers\\utils\\hub.py:758\u001b[0m, in \u001b[0;36mPushToHubMixin._upload_modified_files\u001b[1;34m(self, working_dir, repo_id, files_timestamps, commit_message, token, create_pr, revision, commit_description)\u001b[0m\n\u001b[0;32m    755\u001b[0m     create_branch(repo_id\u001b[38;5;241m=\u001b[39mrepo_id, branch\u001b[38;5;241m=\u001b[39mrevision, token\u001b[38;5;241m=\u001b[39mtoken, exist_ok\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m    757\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUploading the following files to \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrepo_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m,\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(modified_files)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m--> 758\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcreate_commit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    759\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    760\u001b[0m \u001b[43m    \u001b[49m\u001b[43moperations\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moperations\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    761\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_message\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    762\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcommit_description\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_description\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    763\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    764\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    765\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    766\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\utils\\_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[0;32m    116\u001b[0m     kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[1;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\hf_api.py:1227\u001b[0m, in \u001b[0;36mfuture_compatible.<locals>._inner\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1224\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrun_as_future(fn, \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m   1226\u001b[0m \u001b[38;5;66;03m# Otherwise, call the function normally\u001b[39;00m\n\u001b[1;32m-> 1227\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\hf_api.py:3762\u001b[0m, in \u001b[0;36mHfApi.create_commit\u001b[1;34m(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit, run_as_future)\u001b[0m\n\u001b[0;32m   3759\u001b[0m \u001b[38;5;66;03m# If updating twice the same file or update then delete a file in a single commit\u001b[39;00m\n\u001b[0;32m   3760\u001b[0m _warn_on_overwriting_operations(operations)\n\u001b[1;32m-> 3762\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpreupload_lfs_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   3763\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   3764\u001b[0m \u001b[43m    \u001b[49m\u001b[43madditions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madditions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   3765\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   3766\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   3767\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43munquoted_revision\u001b[49m\u001b[43m,\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# first-class methods take unquoted revision\u001b[39;49;00m\n\u001b[0;32m   3768\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   3769\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_threads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   3770\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfree_memory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# do not remove `CommitOperationAdd.path_or_fileobj` on LFS files for \"normal\" users\u001b[39;49;00m\n\u001b[0;32m   3771\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   3772\u001b[0m files_to_copy \u001b[38;5;241m=\u001b[39m _fetch_files_to_copy(\n\u001b[0;32m   3773\u001b[0m     copies\u001b[38;5;241m=\u001b[39mcopies,\n\u001b[0;32m   3774\u001b[0m     repo_type\u001b[38;5;241m=\u001b[39mrepo_type,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   3778\u001b[0m     endpoint\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mendpoint,\n\u001b[0;32m   3779\u001b[0m )\n\u001b[0;32m   3780\u001b[0m commit_payload \u001b[38;5;241m=\u001b[39m _prepare_commit_payload(\n\u001b[0;32m   3781\u001b[0m     operations\u001b[38;5;241m=\u001b[39moperations,\n\u001b[0;32m   3782\u001b[0m     files_to_copy\u001b[38;5;241m=\u001b[39mfiles_to_copy,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   3785\u001b[0m     parent_commit\u001b[38;5;241m=\u001b[39mparent_commit,\n\u001b[0;32m   3786\u001b[0m )\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\hf_api.py:4262\u001b[0m, in \u001b[0;36mHfApi.preupload_lfs_files\u001b[1;34m(self, repo_id, additions, token, repo_type, revision, create_pr, num_threads, free_memory, gitignore_content)\u001b[0m\n\u001b[0;32m   4256\u001b[0m     logger\u001b[38;5;241m.\u001b[39minfo(\n\u001b[0;32m   4257\u001b[0m         \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSkipped upload for \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(new_lfs_additions)\u001b[38;5;250m \u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;28mlen\u001b[39m(new_lfs_additions_to_upload)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m LFS file(s) \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m   4258\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m(ignored by gitignore file).\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m   4259\u001b[0m     )\n\u001b[0;32m   4261\u001b[0m \u001b[38;5;66;03m# Upload new LFS files\u001b[39;00m\n\u001b[1;32m-> 4262\u001b[0m \u001b[43m_upload_lfs_files\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   4263\u001b[0m \u001b[43m    \u001b[49m\u001b[43madditions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnew_lfs_additions_to_upload\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4264\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4265\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4266\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4267\u001b[0m \u001b[43m    \u001b[49m\u001b[43mendpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mendpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4268\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnum_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_threads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4269\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;66;43;03m# If `create_pr`, we don't want to check user permission on the revision as users with read permission\u001b[39;49;00m\n\u001b[0;32m   4270\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;66;43;03m# should still be able to create PRs even if they don't have write permission on the target branch of the\u001b[39;49;00m\n\u001b[0;32m   4271\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;66;43;03m# PR (i.e. `revision`).\u001b[39;49;00m\n\u001b[0;32m   4272\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m   4273\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   4274\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m addition \u001b[38;5;129;01min\u001b[39;00m new_lfs_additions_to_upload:\n\u001b[0;32m   4275\u001b[0m     addition\u001b[38;5;241m.\u001b[39m_is_uploaded \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\utils\\_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[0;32m    116\u001b[0m     kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[1;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\_commit_api.py:360\u001b[0m, in \u001b[0;36m_upload_lfs_files\u001b[1;34m(additions, repo_type, repo_id, token, endpoint, num_threads, revision)\u001b[0m\n\u001b[0;32m    358\u001b[0m batch_actions: List[Dict] \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m    359\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m chunk_iterable(additions, chunk_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m256\u001b[39m):\n\u001b[1;32m--> 360\u001b[0m     batch_actions_chunk, batch_errors_chunk \u001b[38;5;241m=\u001b[39m \u001b[43mpost_lfs_batch_info\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    361\u001b[0m \u001b[43m        \u001b[49m\u001b[43mupload_infos\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupload_info\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mop\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mchunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    362\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    363\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    364\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    365\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    366\u001b[0m \u001b[43m        \u001b[49m\u001b[43mendpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mendpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    367\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    369\u001b[0m     \u001b[38;5;66;03m# If at least 1 error, we do not retrieve information for other chunks\u001b[39;00m\n\u001b[0;32m    370\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m batch_errors_chunk:\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\utils\\_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[0;32m    116\u001b[0m     kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[1;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m fn(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\lfs.py:159\u001b[0m, in \u001b[0;36mpost_lfs_batch_info\u001b[1;34m(upload_infos, token, repo_type, repo_id, revision, endpoint)\u001b[0m\n\u001b[0;32m    157\u001b[0m headers \u001b[38;5;241m=\u001b[39m {\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mLFS_HEADERS, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mbuild_hf_headers(token\u001b[38;5;241m=\u001b[39mtoken \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m)}  \u001b[38;5;66;03m# Token must be provided or retrieved\u001b[39;00m\n\u001b[0;32m    158\u001b[0m resp \u001b[38;5;241m=\u001b[39m get_session()\u001b[38;5;241m.\u001b[39mpost(batch_url, headers\u001b[38;5;241m=\u001b[39mheaders, json\u001b[38;5;241m=\u001b[39mpayload)\n\u001b[1;32m--> 159\u001b[0m \u001b[43mhf_raise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresp\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    160\u001b[0m batch_info \u001b[38;5;241m=\u001b[39m resp\u001b[38;5;241m.\u001b[39mjson()\n\u001b[0;32m    162\u001b[0m objects \u001b[38;5;241m=\u001b[39m batch_info\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobjects\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n",
      "File \u001b[1;32mD:\\software\\Anaconda\\envs\\Work1\\lib\\site-packages\\huggingface_hub\\utils\\_errors.py:362\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[1;34m(response, endpoint_name)\u001b[0m\n\u001b[0;32m    358\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m BadRequestError(message, response\u001b[38;5;241m=\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[0;32m    360\u001b[0m \u001b[38;5;66;03m# Convert `HTTPError` into a `HfHubHTTPError` to display request information\u001b[39;00m\n\u001b[0;32m    361\u001b[0m \u001b[38;5;66;03m# as well (request id and/or server error message)\u001b[39;00m\n\u001b[1;32m--> 362\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m HfHubHTTPError(\u001b[38;5;28mstr\u001b[39m(e), response\u001b[38;5;241m=\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n",
      "\u001b[1;31mHfHubHTTPError\u001b[0m: 403 Client Error: Forbidden for url: https://huggingface.co/shawhin/distilbert-base-uncased-lora-text-classification.git/info/lfs/objects/batch (Request ID: Root=1-65f44b6d-3a7059390bd0f46b3618a6e6;b93e4a6f-c6a2-4179-8d62-ec4b3235048e)\n\nAuthorization error."
     ]
    }
   ],
   "source": [
    "model.push_to_hub(model_id) # save model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f487331a-8552-4fb2-867f-985b8fe1d1ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.push_to_hub(model_id) # save trainer"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "00e7feaa-b70e-4b1d-a118-23c616d14639",
   "metadata": {},
   "source": [
    "### Optional: load peft model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "19cffa01-25a4-4c86-a7fa-a84353b8caae",
   "metadata": {},
   "outputs": [],
   "source": [
    "# how to load peft model from hub for inference\n",
    "config = PeftConfig.from_pretrained(model_id)\n",
    "inference_model = AutoModelForSequenceClassification.from_pretrained(\n",
    "    config.base_model_name_or_path, num_labels=2, id2label=id2label, label2id=label2id\n",
    ")\n",
    "tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
    "model = PeftModel.from_pretrained(inference_model, model_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "77c6ed42-8ec3-4343-9e42-405feac052ba",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Work1",
   "language": "python",
   "name": "work1"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}