File size: 1,643 Bytes
cf07402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: bert-large-e2-version2-noweight
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-e2-version2-noweight

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5193
- Accuracy: 0.9336
- F1: 0.8269
- Precision: 0.8039
- Recall: 0.8512

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0645        | 1.0   | 4089 | 0.8181          | 0.8762   | 0.7398 | 0.6080    | 0.9446 |
| 0.0123        | 2.0   | 8178 | 0.5193          | 0.9336   | 0.8269 | 0.8039    | 0.8512 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3