YasinShihab
commited on
Commit
·
287518d
1
Parent(s):
93ffe66
Created readme.md
Browse files
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: Bengali
|
3 |
+
datasets:
|
4 |
+
- OpenSLR
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- bn
|
9 |
+
- audio
|
10 |
+
- automatic-speech-recognition
|
11 |
+
- speech
|
12 |
+
license: cc-by-sa-4.0
|
13 |
+
model-index:
|
14 |
+
- name: XLSR Wav2Vec2 Bengali by Arijit
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: OpenSLR
|
21 |
+
type: OpenSLR
|
22 |
+
args: ben
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 32.45
|
27 |
+
---
|
28 |
+
# Wav2Vec2-Large-XLSR-Bengali
|
29 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training.
|
30 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
+
Train Script can be Found at : train.py
|
32 |
+
Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing
|
33 |
+
Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
The model can be used directly (without a language model) as follows:
|
37 |
+
```python
|
38 |
+
import torch
|
39 |
+
import torchaudio
|
40 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
+
processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali")
|
42 |
+
model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali")
|
43 |
+
# model = model.to("cuda")
|
44 |
+
resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000)
|
45 |
+
def speech_file_to_array_fn(batch):
|
46 |
+
speech_array, sampling_rate = torchaudio.load(batch)
|
47 |
+
speech = resampler(speech_array).squeeze().numpy()
|
48 |
+
return speech
|
49 |
+
speech_array = speech_file_to_array_fn("test_file.wav")
|
50 |
+
inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
|
51 |
+
with torch.no_grad():
|
52 |
+
logits = model(inputs.input_values).logits
|
53 |
+
|
54 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
55 |
+
preds = processor.batch_decode(predicted_ids)[0]
|
56 |
+
print(preds.replace("[PAD]",""))
|
57 |
+
```
|
58 |
+
**Test Result**: WER on ~4200 utterance : 32.45 %
|