File size: 2,041 Bytes
ae92bd9 d9cc818 ae92bd9 66d6958 ae92bd9 66d6958 ae92bd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_english_tehnical
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_english_tehnical
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on [English_Technical_data](https://huggingface.co/datasets/Yassmen/TTS_English_Technical_data).
It achieves the following results on the evaluation set:
- Loss: 0.4508
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5468 | 0.3573 | 100 | 0.4985 |
| 0.5389 | 0.7146 | 200 | 0.4955 |
| 0.5149 | 1.0719 | 300 | 0.4767 |
| 0.5034 | 1.4292 | 400 | 0.4669 |
| 0.4961 | 1.7865 | 500 | 0.4644 |
| 0.4903 | 2.1438 | 600 | 0.4643 |
| 0.4836 | 2.5011 | 700 | 0.4587 |
| 0.4829 | 2.8584 | 800 | 0.4539 |
| 0.4752 | 3.2157 | 900 | 0.4515 |
| 0.4776 | 3.5730 | 1000 | 0.4508 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|