File size: 2,041 Bytes
ae92bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9cc818
ae92bd9
66d6958
ae92bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66d6958
 
 
 
 
 
 
 
 
 
ae92bd9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_english_tehnical
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_english_tehnical

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on [English_Technical_data](https://huggingface.co/datasets/Yassmen/TTS_English_Technical_data).
It achieves the following results on the evaluation set:
- Loss: 0.4508

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5468        | 0.3573 | 100  | 0.4985          |
| 0.5389        | 0.7146 | 200  | 0.4955          |
| 0.5149        | 1.0719 | 300  | 0.4767          |
| 0.5034        | 1.4292 | 400  | 0.4669          |
| 0.4961        | 1.7865 | 500  | 0.4644          |
| 0.4903        | 2.1438 | 600  | 0.4643          |
| 0.4836        | 2.5011 | 700  | 0.4587          |
| 0.4829        | 2.8584 | 800  | 0.4539          |
| 0.4752        | 3.2157 | 900  | 0.4515          |
| 0.4776        | 3.5730 | 1000 | 0.4508          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1