Yhyu13's picture
Upload
02ea771
raw
history blame
14.1 kB
01/18/2024 19:24:50 - WARNING - llmtuner.model.parser - `ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.
[INFO|training_args.py:1838] 2024-01-18 19:24:50,331 >> PyTorch: setting up devices
/home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/transformers/training_args.py:1751: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of πŸ€— Transformers. Use `--hub_token` instead.
warnings.warn(
01/18/2024 19:24:50 - INFO - llmtuner.model.parser - Process rank: 0, device: cuda:0, n_gpu: 1
distributed training: True, compute dtype: None
01/18/2024 19:24:50 - INFO - llmtuner.model.parser - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=False,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=IntervalStrategy.NO,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=HubStrategy.EVERY_SAVE,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20/runs/Jan18_19-24-50_yhyu13fuwuqi,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=IntervalStrategy.STEPS,
lr_scheduler_kwargs={},
lr_scheduler_type=SchedulerType.LINEAR,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=3.0,
optim=OptimizerNames.ADAMW_TORCH,
optim_args=None,
output_dir=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=1,
per_device_train_batch_size=8,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
resume_from_checkpoint=None,
run_name=./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=IntervalStrategy.STEPS,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=False,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
01/18/2024 19:24:50 - INFO - llmtuner.data.loader - Loading dataset ./glaive-function-calling-v2-llama-factory-convert/simple-function-calling-v2_converted_2000.json...
01/18/2024 19:24:50 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json.
Using custom data configuration default-cb85ddec01d455d4
Loading Dataset Infos from /home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/datasets/packaged_modules/json
Overwrite dataset info from restored data version if exists.
Loading Dataset info from /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96
Found cached dataset json (/home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96)
Loading Dataset info from /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96
[INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer.model
[INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2024] 2024-01-18 19:24:51,385 >> loading file tokenizer.json
[INFO|configuration_utils.py:737] 2024-01-18 19:24:51,427 >> loading configuration file Yhyu13/LMCocktail-10.7B-v1/config.json
[INFO|configuration_utils.py:802] 2024-01-18 19:24:51,428 >> Model config LlamaConfig {
"_name_or_path": "Yhyu13/LMCocktail-10.7B-v1",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 4096,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 48,
"num_key_value_heads": 8,
"pad_token_id": 2,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"rope_theta": 10000.0,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.36.2",
"use_cache": true,
"vocab_size": 32000
}
[INFO|modeling_utils.py:3341] 2024-01-18 19:24:51,444 >> loading weights file Yhyu13/LMCocktail-10.7B-v1/model.safetensors.index.json
[INFO|modeling_utils.py:1341] 2024-01-18 19:24:51,444 >> Instantiating LlamaForCausalLM model under default dtype torch.float16.
[INFO|configuration_utils.py:826] 2024-01-18 19:24:51,445 >> Generate config GenerationConfig {
"bos_token_id": 1,
"eos_token_id": 2,
"pad_token_id": 2
}
Loading checkpoint shards: 0%| | 0/5 [00:00<?, ?it/s]
Loading checkpoint shards: 20%|β–ˆβ–ˆ | 1/5 [00:00<00:00, 6.36it/s]
Loading checkpoint shards: 40%|β–ˆβ–ˆβ–ˆβ–ˆ | 2/5 [00:00<00:00, 6.36it/s]Yhyu13/LMCocktail-10.7B-v1
Loading checkpoint shards: 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 3/5 [00:00<00:00, 6.36it/s]
Loading checkpoint shards: 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4/5 [00:00<00:00, 6.36it/s]Yhyu13/LMCocktail-10.7B-v1
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 6.42it/s]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 6.39it/s]
[INFO|modeling_utils.py:4185] 2024-01-18 19:24:52,397 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
[INFO|modeling_utils.py:4193] 2024-01-18 19:24:52,397 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at ./models/LMCocktail-10.7B-v1.
If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
[INFO|configuration_utils.py:779] 2024-01-18 19:24:52,400 >> loading configuration file ./models/LMCocktail-10.7B-v1/generation_config.json
[INFO|configuration_utils.py:826] 2024-01-18 19:24:52,400 >> Generate config GenerationConfig {
"bos_token_id": 1,
"eos_token_id": 2,
"pad_token_id": 2,
"use_cache": false
}
01/18/2024 19:24:52 - INFO - llmtuner.model.adapter - Fine-tuning method: LoRA
01/18/2024 19:24:54 - INFO - llmtuner.model.adapter - Merged 1 adapter(s).
01/18/2024 19:24:54 - INFO - llmtuner.model.adapter - Loaded adapter(s): ./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora
01/18/2024 19:24:54 - INFO - llmtuner.model.loader - trainable params: 0 || all params: 10731524096 || trainable%: 0.0000
01/18/2024 19:24:54 - INFO - llmtuner.model.loader - This IS expected that the trainable params is 0 if you are using model for inference only.
Running tokenizer on dataset: 0%| | 0/20 [00:00<?, ? examples/s]Caching processed dataset at /home/hangyu5/.cache/huggingface/datasets/json/default-cb85ddec01d455d4/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96/cache-700bf363697824f9.arrow
Running tokenizer on dataset: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 20/20 [00:00<00:00, 529.06 examples/s]
[INFO|training_args.py:1838] 2024-01-18 19:24:54,939 >> PyTorch: setting up devices
Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
[INFO|trainer.py:3166] 2024-01-18 19:24:57,618 >> ***** Running Prediction *****
[INFO|trainer.py:3168] 2024-01-18 19:24:57,618 >> Num examples = 20
[INFO|trainer.py:3171] 2024-01-18 19:24:57,618 >> Batch size = 1
[INFO|configuration_utils.py:826] 2024-01-18 19:24:57,631 >> Generate config GenerationConfig {
"bos_token_id": 1,
"eos_token_id": 2,
"pad_token_id": 2
}
/home/hangyu5/anaconda3/envs/llama_factory/lib/python3.11/site-packages/transformers/generation/utils.py:1518: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use and modify the model generation configuration (see https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )
warnings.warn(
input_ids:
[1, 774, 1247, 28747, 13, 27842, 28747, 995, 460, 264, 10865, 13892, 395, 2735, 298, 272, 2296, 5572, 28723, 5938, 706, 513, 3030, 387, 13, 28751, 13, 2287, 345, 861, 1264, 345, 527, 28730, 720, 4078, 28730, 6036, 548, 13, 2287, 345, 6518, 1264, 345, 1458, 272, 8877, 4338, 1444, 989, 1191, 951, 20023, 548, 13, 2287, 345, 11438, 1264, 371, 13, 5390, 345, 1123, 1264, 345, 2814, 548, 13, 5390, 345, 10723, 1264, 371, 13, 17422, 345, 2893, 28730, 16714, 1264, 371, 13, 1417, 28705, 345, 1123, 1264, 345, 1427, 548, 13, 1417, 28705, 345, 6518, 1264, 345, 1014, 15547, 298, 6603, 477, 28739, 13, 17422, 1630, 13, 17422, 345, 3731, 28730, 16714, 1264, 371, 13, 1417, 28705, 345, 1123, 1264, 345, 1427, 548, 13, 1417, 28705, 345, 6518, 1264, 345, 1014, 15547, 298, 6603, 298, 28739, 13, 17422, 443, 13, 5390, 1630, 13, 5390, 345, 10893, 1264, 733, 13, 17422, 345, 2893, 28730, 16714, 548, 13, 17422, 345, 3731, 28730, 16714, 28739, 13, 5390, 4709, 13, 2287, 443, 13, 28752, 13, 13, 6325, 368, 1820, 264, 9314, 354, 528, 477, 1450, 2726, 298, 4222, 28804, 13, 13, 27332, 21631, 28747, 13]
inputs:
<s>### User:
SYSTEM: You are a helpful assistant with access to the following functions. Use them if required -
{
"name": "get_exchange_rate",
"description": "Get the exchange rate between two currencies",
"parameters": {
"type": "object",
"properties": {
"base_currency": {
"type": "string",
"description": "The currency to convert from"
},
"target_currency": {
"type": "string",
"description": "The currency to convert to"
}
},
"required": [
"base_currency",
"target_currency"
]
}
}
Can you book a flight for me from New York to London?
### Assistant:
0%| | 0/20 [00:00<?, ?it/s]
10%|β–ˆ | 2/20 [00:01<00:13, 1.31it/s]
15%|β–ˆβ–Œ | 3/20 [00:04<00:26, 1.56s/it]
20%|β–ˆβ–ˆ | 4/20 [00:05<00:25, 1.60s/it]
25%|β–ˆβ–ˆβ–Œ | 5/20 [00:09<00:32, 2.16s/it]
30%|β–ˆβ–ˆβ–ˆ | 6/20 [00:10<00:26, 1.87s/it]
35%|β–ˆβ–ˆβ–ˆβ–Œ | 7/20 [00:12<00:24, 1.87s/it]
40%|β–ˆβ–ˆβ–ˆβ–ˆ | 8/20 [00:13<00:21, 1.79s/it]
45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 9/20 [00:15<00:17, 1.62s/it]
50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 10/20 [00:17<00:18, 1.81s/it]
55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 11/20 [00:18<00:15, 1.75s/it]
60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 12/20 [00:19<00:12, 1.51s/it]
65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 13/20 [00:22<00:12, 1.79s/it]
70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 14/20 [00:23<00:08, 1.50s/it]
75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 15/20 [00:26<00:10, 2.07s/it]
80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 16/20 [00:27<00:06, 1.74s/it]
85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 17/20 [00:29<00:05, 1.79s/it]
90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 18/20 [00:31<00:03, 1.99s/it]
95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 19/20 [00:32<00:01, 1.63s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 20/20 [00:34<00:00, 1.72s/it]Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
Loading model cost 0.675 seconds.
Prefix dict has been built successfully.
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 20/20 [00:35<00:00, 1.77s/it]
***** predict metrics *****
predict_bleu-4 = 84.0251
predict_rouge-1 = 88.6553
predict_rouge-2 = 80.2374
predict_rouge-l = 86.4698
predict_runtime = 0:00:37.47
predict_samples_per_second = 0.534
predict_steps_per_second = 0.534
01/18/2024 19:25:35 - INFO - llmtuner.train.sft.trainer - Saving prediction results to ./models/sft/LMCocktail-10.7B-v1-sft-glaive-function-calling-v2-ep1-lora/Predict_20/generated_predictions.jsonl