File size: 36,013 Bytes
d6d798b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
# UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition
# Github source: https://github.com/AILab-CVC/UniRepLKNet
# Licensed under The Apache License 2.0 License [see LICENSE for details]
# Based on RepLKNet, ConvNeXt, timm, DINO and DeiT code bases
# https://github.com/DingXiaoH/RepLKNet-pytorch
# https://github.com/facebookresearch/ConvNeXt
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath, to_2tuple
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, SelectAdaptivePool2d, DropPath, ConvMlp, Mlp, LayerNorm2d, LayerNorm, \
create_conv2d, get_act_layer, make_divisible, to_ntuple
from functools import partial
import torch.utils.checkpoint as checkpoint
try:
from huggingface_hub import hf_hub_download
except:
hf_hub_download = None # install huggingface_hub if you would like to download models conveniently from huggingface
has_mmdet = False
has_mmseg = False
# =============== for the ease of directly using this file in MMSegmentation and MMDetection.
# =============== ignore the following two segments of code if you do not plan to do so
# =============== delete one of the following two segments if you get a confliction
try:
from mmseg.models.builder import BACKBONES as seg_BACKBONES
from mmseg.utils import get_root_logger
from mmcv.runner import _load_checkpoint
has_mmseg = True
except ImportError:
get_root_logger = None
_load_checkpoint = None
# try:
# from mmdet.models.builder import BACKBONES as det_BACKBONES
# from mmdet.utils import get_root_logger
# from mmcv.runner import _load_checkpoint
# has_mmdet = True
# except ImportError:
# get_root_logger = None
# _load_checkpoint = None
# ===========================================================================================
class GRNwithNHWC(nn.Module):
""" GRN (Global Response Normalization) layer
Originally proposed in ConvNeXt V2 (https://arxiv.org/abs/2301.00808)
This implementation is more efficient than the original (https://github.com/facebookresearch/ConvNeXt-V2)
We assume the inputs to this layer are (N, H, W, C)
"""
def __init__(self, dim, use_bias=True):
super().__init__()
self.use_bias = use_bias
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
if self.use_bias:
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
if self.use_bias:
return (self.gamma * Nx + 1) * x + self.beta
else:
return (self.gamma * Nx + 1) * x
class NCHWtoNHWC(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 2, 3, 1)
class NHWCtoNCHW(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 3, 1, 2)
#================== This function decides which conv implementation (the native or iGEMM) to use
# Note that iGEMM large-kernel conv impl will be used if
# - you attempt to do so (attempt_to_use_large_impl=True), and
# - it has been installed (follow https://github.com/AILab-CVC/UniRepLKNet), and
# - the conv layer is depth-wise, stride = 1, non-dilated, kernel_size > 5, and padding == kernel_size // 2
def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias,
attempt_use_lk_impl=True):
kernel_size = to_2tuple(kernel_size)
if padding is None:
padding = (kernel_size[0] // 2, kernel_size[1] // 2)
else:
padding = to_2tuple(padding)
need_large_impl = kernel_size[0] == kernel_size[1] and kernel_size[0] > 5 and padding == (kernel_size[0] // 2, kernel_size[1] // 2)
if attempt_use_lk_impl and need_large_impl:
print('---------------- trying to import iGEMM implementation for large-kernel conv')
try:
from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
print('---------------- found iGEMM implementation ')
except:
DepthWiseConv2dImplicitGEMM = None
print('---------------- found no iGEMM. use original conv. follow https://github.com/AILab-CVC/UniRepLKNet to install it.')
if DepthWiseConv2dImplicitGEMM is not None and need_large_impl and in_channels == out_channels \
and out_channels == groups and stride == 1 and dilation == 1:
print(f'===== iGEMM Efficient Conv Impl, channels {in_channels}, kernel size {kernel_size} =====')
return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias)
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
def get_bn(dim, use_sync_bn=False):
if use_sync_bn:
return nn.SyncBatchNorm(dim)
else:
return nn.BatchNorm2d(dim)
class SEBlock(nn.Module):
"""
Squeeze-and-Excitation Block proposed in SENet (https://arxiv.org/abs/1709.01507)
We assume the inputs to this layer are (N, C, H, W)
"""
def __init__(self, input_channels, internal_neurons):
super(SEBlock, self).__init__()
self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons,
kernel_size=1, stride=1, bias=True)
self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels,
kernel_size=1, stride=1, bias=True)
self.input_channels = input_channels
self.nonlinear = nn.ReLU(inplace=True)
def forward(self, inputs):
x = F.adaptive_avg_pool2d(inputs, output_size=(1, 1))
x = self.down(x)
x = self.nonlinear(x)
x = self.up(x)
x = F.sigmoid(x)
return inputs * x.view(-1, self.input_channels, 1, 1)
def fuse_bn(conv, bn):
conv_bias = 0 if conv.bias is None else conv.bias
std = (bn.running_var + bn.eps).sqrt()
return conv.weight * (bn.weight / std).reshape(-1, 1, 1, 1), bn.bias + (conv_bias - bn.running_mean) * bn.weight / std
def convert_dilated_to_nondilated(kernel, dilate_rate):
identity_kernel = torch.ones((1, 1, 1, 1)).to(kernel.device)
if kernel.size(1) == 1:
# This is a DW kernel
dilated = F.conv_transpose2d(kernel, identity_kernel, stride=dilate_rate)
return dilated
else:
# This is a dense or group-wise (but not DW) kernel
slices = []
for i in range(kernel.size(1)):
dilated = F.conv_transpose2d(kernel[:,i:i+1,:,:], identity_kernel, stride=dilate_rate)
slices.append(dilated)
return torch.cat(slices, dim=1)
def merge_dilated_into_large_kernel(large_kernel, dilated_kernel, dilated_r):
large_k = large_kernel.size(2)
dilated_k = dilated_kernel.size(2)
equivalent_kernel_size = dilated_r * (dilated_k - 1) + 1
equivalent_kernel = convert_dilated_to_nondilated(dilated_kernel, dilated_r)
rows_to_pad = large_k // 2 - equivalent_kernel_size // 2
merged_kernel = large_kernel + F.pad(equivalent_kernel, [rows_to_pad] * 4)
return merged_kernel
class DilatedReparamBlock(nn.Module):
"""
Dilated Reparam Block proposed in UniRepLKNet (https://github.com/AILab-CVC/UniRepLKNet)
We assume the inputs to this block are (N, C, H, W)
"""
def __init__(self, channels, kernel_size, deploy, use_sync_bn=False, attempt_use_lk_impl=True):
super().__init__()
self.lk_origin = get_conv2d(channels, channels, kernel_size, stride=1,
padding=kernel_size//2, dilation=1, groups=channels, bias=deploy,
attempt_use_lk_impl=attempt_use_lk_impl)
self.attempt_use_lk_impl = attempt_use_lk_impl
# Default settings. We did not tune them carefully. Different settings may work better.
if kernel_size == 17:
self.kernel_sizes = [5, 9, 3, 3, 3]
self.dilates = [1, 2, 4, 5, 7]
elif kernel_size == 15:
self.kernel_sizes = [5, 7, 3, 3, 3]
self.dilates = [1, 2, 3, 5, 7]
elif kernel_size == 13:
self.kernel_sizes = [5, 7, 3, 3, 3]
self.dilates = [1, 2, 3, 4, 5]
elif kernel_size == 11:
self.kernel_sizes = [5, 5, 3, 3, 3]
self.dilates = [1, 2, 3, 4, 5]
elif kernel_size == 9:
self.kernel_sizes = [5, 5, 3, 3]
self.dilates = [1, 2, 3, 4]
elif kernel_size == 7:
self.kernel_sizes = [5, 3, 3]
self.dilates = [1, 2, 3]
elif kernel_size == 5:
self.kernel_sizes = [3, 3]
self.dilates = [1, 2]
else:
raise ValueError('Dilated Reparam Block requires kernel_size >= 5')
if not deploy:
self.origin_bn = get_bn(channels, use_sync_bn)
for k, r in zip(self.kernel_sizes, self.dilates):
self.__setattr__('dil_conv_k{}_{}'.format(k, r),
nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=k, stride=1,
padding=(r * (k - 1) + 1) // 2, dilation=r, groups=channels,
bias=False))
self.__setattr__('dil_bn_k{}_{}'.format(k, r), get_bn(channels, use_sync_bn=use_sync_bn))
def forward(self, x):
if not hasattr(self, 'origin_bn'): # deploy mode
return self.lk_origin(x)
out = self.origin_bn(self.lk_origin(x))
for k, r in zip(self.kernel_sizes, self.dilates):
conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
out = out + bn(conv(x))
return out
def merge_dilated_branches(self):
if hasattr(self, 'origin_bn'):
origin_k, origin_b = fuse_bn(self.lk_origin, self.origin_bn)
for k, r in zip(self.kernel_sizes, self.dilates):
conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
branch_k, branch_b = fuse_bn(conv, bn)
origin_k = merge_dilated_into_large_kernel(origin_k, branch_k, r)
origin_b += branch_b
merged_conv = get_conv2d(origin_k.size(0), origin_k.size(0), origin_k.size(2), stride=1,
padding=origin_k.size(2)//2, dilation=1, groups=origin_k.size(0), bias=True,
attempt_use_lk_impl=self.attempt_use_lk_impl)
merged_conv.weight.data = origin_k
merged_conv.bias.data = origin_b
self.lk_origin = merged_conv
self.__delattr__('origin_bn')
for k, r in zip(self.kernel_sizes, self.dilates):
self.__delattr__('dil_conv_k{}_{}'.format(k, r))
self.__delattr__('dil_bn_k{}_{}'.format(k, r))
class UniRepLKNetBlock(nn.Module):
def __init__(self,
dim,
kernel_size,
drop_path=0.,
layer_scale_init_value=1e-6,
deploy=False,
attempt_use_lk_impl=True,
with_cp=False,
use_sync_bn=False,
ffn_factor=4):
super().__init__()
self.with_cp = with_cp
if deploy:
print('------------------------------- Note: deploy mode')
if self.with_cp:
print('****** note with_cp = True, reduce memory consumption but may slow down training ******')
if kernel_size == 0:
self.dwconv = nn.Identity()
elif kernel_size >= 7:
self.dwconv = DilatedReparamBlock(dim, kernel_size, deploy=deploy,
use_sync_bn=use_sync_bn,
attempt_use_lk_impl=attempt_use_lk_impl)
else:
assert kernel_size in [3, 5]
self.dwconv = get_conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
dilation=1, groups=dim, bias=deploy,
attempt_use_lk_impl=attempt_use_lk_impl)
if deploy or kernel_size == 0:
self.norm = nn.Identity()
else:
self.norm = get_bn(dim, use_sync_bn=use_sync_bn)
self.se = SEBlock(dim, dim // 4)
ffn_dim = int(ffn_factor * dim)
self.pwconv1 = nn.Sequential(
NCHWtoNHWC(),
nn.Linear(dim, ffn_dim))
self.act = nn.Sequential(
nn.GELU(),
GRNwithNHWC(ffn_dim, use_bias=not deploy))
if deploy:
self.pwconv2 = nn.Sequential(
nn.Linear(ffn_dim, dim),
NHWCtoNCHW())
else:
self.pwconv2 = nn.Sequential(
nn.Linear(ffn_dim, dim, bias=False),
NHWCtoNCHW(),
get_bn(dim, use_sync_bn=use_sync_bn))
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if (not deploy) and layer_scale_init_value is not None \
and layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def compute_residual(self, x):
y = self.se(self.norm(self.dwconv(x)))
y = self.pwconv2(self.act(self.pwconv1(y)))
if self.gamma is not None:
y = self.gamma.view(1, -1, 1, 1) * y
return self.drop_path(y)
def forward(self, inputs):
def _f(x):
return x + self.compute_residual(x)
if self.with_cp and inputs.requires_grad:
out = checkpoint.checkpoint(_f, inputs)
else:
out = _f(inputs)
return out
def reparameterize(self):
if hasattr(self.dwconv, 'merge_dilated_branches'):
self.dwconv.merge_dilated_branches()
if hasattr(self.norm, 'running_var'):
std = (self.norm.running_var + self.norm.eps).sqrt()
if hasattr(self.dwconv, 'lk_origin'):
self.dwconv.lk_origin.weight.data *= (self.norm.weight / std).view(-1, 1, 1, 1)
self.dwconv.lk_origin.bias.data = self.norm.bias + (
self.dwconv.lk_origin.bias - self.norm.running_mean) * self.norm.weight / std
else:
conv = nn.Conv2d(self.dwconv.in_channels, self.dwconv.out_channels, self.dwconv.kernel_size,
padding=self.dwconv.padding, groups=self.dwconv.groups, bias=True)
conv.weight.data = self.dwconv.weight * (self.norm.weight / std).view(-1, 1, 1, 1)
conv.bias.data = self.norm.bias - self.norm.running_mean * self.norm.weight / std
self.dwconv = conv
self.norm = nn.Identity()
if self.gamma is not None:
final_scale = self.gamma.data
self.gamma = None
else:
final_scale = 1
if self.act[1].use_bias and len(self.pwconv2) == 3:
grn_bias = self.act[1].beta.data
self.act[1].__delattr__('beta')
self.act[1].use_bias = False
linear = self.pwconv2[0]
grn_bias_projected_bias = (linear.weight.data @ grn_bias.view(-1, 1)).squeeze()
bn = self.pwconv2[2]
std = (bn.running_var + bn.eps).sqrt()
new_linear = nn.Linear(linear.in_features, linear.out_features, bias=True)
new_linear.weight.data = linear.weight * (bn.weight / std * final_scale).view(-1, 1)
linear_bias = 0 if linear.bias is None else linear.bias.data
linear_bias += grn_bias_projected_bias
new_linear.bias.data = (bn.bias + (linear_bias - bn.running_mean) * bn.weight / std) * final_scale
self.pwconv2 = nn.Sequential(new_linear, self.pwconv2[1])
default_UniRepLKNet_A_F_P_kernel_sizes = ((3, 3),
(13, 13),
(13, 13, 13, 13, 13, 13),
(13, 13))
default_UniRepLKNet_N_kernel_sizes = ((3, 3),
(13, 13),
(13, 13, 13, 13, 13, 13, 13, 13),
(13, 13))
default_UniRepLKNet_T_kernel_sizes = ((3, 3, 3),
(13, 13, 13),
(13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3),
(13, 13, 13))
default_UniRepLKNet_S_B_L_XL_kernel_sizes = ((3, 3, 3),
(13, 13, 13),
(13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3),
(13, 13, 13))
UniRepLKNet_A_F_P_depths = (2, 2, 6, 2)
UniRepLKNet_N_depths = (2, 2, 8, 2)
UniRepLKNet_T_depths = (3, 3, 18, 3)
UniRepLKNet_S_B_L_XL_depths = (3, 3, 27, 3)
default_depths_to_kernel_sizes = {
UniRepLKNet_A_F_P_depths: default_UniRepLKNet_A_F_P_kernel_sizes,
UniRepLKNet_N_depths: default_UniRepLKNet_N_kernel_sizes,
UniRepLKNet_T_depths: default_UniRepLKNet_T_kernel_sizes,
UniRepLKNet_S_B_L_XL_depths: default_UniRepLKNet_S_B_L_XL_kernel_sizes
}
class UniRepLKNet(nn.Module):
r""" UniRepLKNet
A PyTorch impl of UniRepLKNet
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 27, 3)
dims (int): Feature dimension at each stage. Default: (96, 192, 384, 768)
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
kernel_sizes (tuple(tuple(int))): Kernel size for each block. None means using the default settings. Default: None.
deploy (bool): deploy = True means using the inference structure. Default: False
with_cp (bool): with_cp = True means using torch.utils.checkpoint to save GPU memory. Default: False
init_cfg (dict): weights to load. The easiest way to use UniRepLKNet with for OpenMMLab family. Default: None
attempt_use_lk_impl (bool): try to load the efficient iGEMM large-kernel impl. Setting it to False disabling the iGEMM impl. Default: True
use_sync_bn (bool): use_sync_bn = True means using sync BN. Use it if your batch size is small. Default: False
"""
def __init__(self,
in_chans=3,
num_classes=1000,
depths=(3, 3, 27, 3),
dims=(96, 192, 384, 768),
drop_path_rate=0.,
layer_scale_init_value=1e-6,
head_init_scale=1.,
kernel_sizes=None,
deploy=False,
with_cp=True,
init_cfg=None,
attempt_use_lk_impl=True,
use_sync_bn=False,
**kwargs
):
super().__init__()
depths = tuple(depths)
if kernel_sizes is None:
if depths in default_depths_to_kernel_sizes:
print('=========== use default kernel size ')
kernel_sizes = default_depths_to_kernel_sizes[depths]
else:
raise ValueError('no default kernel size settings for the given depths, '
'please specify kernel sizes for each block, e.g., '
'((3, 3), (13, 13), (13, 13, 13, 13, 13, 13), (13, 13))')
print(kernel_sizes)
for i in range(4):
assert len(kernel_sizes[i]) == depths[i], 'kernel sizes do not match the depths'
self.with_cp = with_cp
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
print('=========== drop path rates: ', dp_rates)
self.downsample_layers = nn.ModuleList()
self.downsample_layers.append(nn.Sequential(
nn.Conv2d(in_chans, dims[0] // 2, kernel_size=3, stride=2, padding=1),
LayerNorm(dims[0] // 2, eps=1e-6, data_format="channels_first"),
nn.GELU(),
nn.Conv2d(dims[0] // 2, dims[0], kernel_size=3, stride=2, padding=1),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")))
for i in range(3):
self.downsample_layers.append(nn.Sequential(
nn.Conv2d(dims[i], dims[i + 1], kernel_size=3, stride=2, padding=1),
LayerNorm(dims[i + 1], eps=1e-6, data_format="channels_first")))
self.stages = nn.ModuleList()
cur = 0
for i in range(4):
main_stage = nn.Sequential(
*[UniRepLKNetBlock(dim=dims[i], kernel_size=kernel_sizes[i][j], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value, deploy=deploy,
attempt_use_lk_impl=attempt_use_lk_impl,
with_cp=with_cp, use_sync_bn=use_sync_bn) for j in
range(depths[i])])
self.stages.append(main_stage)
cur += depths[i]
self.last_channels = dims[-1]
self.for_pretrain = init_cfg is None
self.for_downstream = not self.for_pretrain # there may be some other scenarios
if self.for_downstream:
assert num_classes is None
if self.for_pretrain:
self.init_cfg = None
self.norm = nn.LayerNorm(self.last_channels, eps=1e-6) # final norm layer
# self.head = nn.Linear(self.last_channels, num_classes)
self.head = nn.Linear(self.last_channels, self.last_channels)
self.apply(self._init_weights)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
self.output_mode = 'logits'
else:
self.init_cfg = init_cfg # OpenMMLab style init
self.init_weights()
self.output_mode = 'features'
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
for i_layer in range(4):
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
# load pretrained backbone weights in the OpenMMLab style
def init_weights(self):
def load_state_dict(module, state_dict, strict=False, logger=None):
unexpected_keys = []
own_state = module.state_dict()
for name, param in state_dict.items():
if name not in own_state:
unexpected_keys.append(name)
continue
if isinstance(param, torch.nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
try:
own_state[name].copy_(param)
except Exception:
raise RuntimeError(
'While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'.format(
name, own_state[name].size(), param.size()))
missing_keys = set(own_state.keys()) - set(state_dict.keys())
err_msg = []
if unexpected_keys:
err_msg.append('unexpected key in source state_dict: {}\n'.format(', '.join(unexpected_keys)))
if missing_keys:
err_msg.append('missing keys in source state_dict: {}\n'.format(', '.join(missing_keys)))
err_msg = '\n'.join(err_msg)
if err_msg:
if strict:
raise RuntimeError(err_msg)
elif logger is not None:
logger.warn(err_msg)
else:
print(err_msg)
logger = get_root_logger()
assert self.init_cfg is not None
ckpt_path = self.init_cfg['checkpoint']
if ckpt_path is None:
print('================ Note: init_cfg is provided but I got no init ckpt path, so skip initialization')
else:
ckpt = _load_checkpoint(ckpt_path, logger=logger, map_location='cpu')
if 'state_dict' in ckpt:
_state_dict = ckpt['state_dict']
elif 'model' in ckpt:
_state_dict = ckpt['model']
else:
_state_dict = ckpt
load_state_dict(self, _state_dict, strict=False, logger=logger)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
if self.output_mode == 'logits':
for stage_idx in range(4):
x = self.downsample_layers[stage_idx](x)
x = self.stages[stage_idx](x)
x = self.norm(x.mean([-2, -1]))
x = self.head(x)
return x
elif self.output_mode == 'features':
outs = []
for stage_idx in range(4):
x = self.downsample_layers[stage_idx](x)
x = self.stages[stage_idx](x)
outs.append(self.__getattr__(f'norm{stage_idx}')(x))
return outs
else:
raise ValueError('Defined new output mode?')
def reparameterize_unireplknet(self):
for m in self.modules():
if hasattr(m, 'reparameterize'):
m.reparameterize()
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes=0, global_pool=None):
if global_pool is not None:
self.head.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
self.head.flatten = nn.Flatten(1) if global_pool else nn.Identity()
# self.head.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.head.fc = nn.Linear(self.num_features, self.num_features) if num_classes > 0 else nn.Identity()
class LayerNorm(nn.Module):
r""" LayerNorm implementation used in ConvNeXt
LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", reshape_last_to_first=False):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
self.reshape_last_to_first = reshape_last_to_first
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
# For easy use as backbone in MMDetection framework. Ignore these lines if you do not use MMDetection
if has_mmdet:
@det_BACKBONES.register_module()
class UniRepLKNetBackbone(UniRepLKNet):
def __init__(self,
depths=(3, 3, 27, 3),
dims=(96, 192, 384, 768),
drop_path_rate=0.,
layer_scale_init_value=1e-6,
kernel_sizes=None,
deploy=False,
with_cp=False,
init_cfg=None,
attempt_use_lk_impl=False):
assert init_cfg is not None
super().__init__(in_chans=3, num_classes=None, depths=depths, dims=dims,
drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value,
kernel_sizes=kernel_sizes, deploy=deploy, with_cp=with_cp,
init_cfg=init_cfg, attempt_use_lk_impl=attempt_use_lk_impl, use_sync_bn=True)
# For easy use as backbone in MMSegmentation framework. Ignore these lines if you do not use MMSegmentation
if has_mmseg:
@seg_BACKBONES.register_module()
class UniRepLKNetBackbone(UniRepLKNet):
def __init__(self,
depths=(3, 3, 27, 3),
dims=(96, 192, 384, 768),
drop_path_rate=0.,
layer_scale_init_value=1e-6,
kernel_sizes=None,
deploy=False,
with_cp=False,
init_cfg=None,
attempt_use_lk_impl=False):
assert init_cfg is not None
super().__init__(in_chans=3, num_classes=None, depths=depths, dims=dims,
drop_path_rate=drop_path_rate, layer_scale_init_value=layer_scale_init_value,
kernel_sizes=kernel_sizes, deploy=deploy, with_cp=with_cp,
init_cfg=init_cfg, attempt_use_lk_impl=attempt_use_lk_impl, use_sync_bn=True)
model_urls = {
#TODO: it seems that google drive does not support direct downloading with url? so where to upload the checkpoints other than huggingface? any suggestions?
}
huggingface_file_names = {
"unireplknet_a_1k": "unireplknet_a_in1k_224_acc77.03.pth",
"unireplknet_f_1k": "unireplknet_f_in1k_224_acc78.58.pth",
"unireplknet_p_1k": "unireplknet_p_in1k_224_acc80.23.pth",
"unireplknet_n_1k": "unireplknet_n_in1k_224_acc81.64.pth",
"unireplknet_t_1k": "unireplknet_t_in1k_224_acc83.21.pth",
"unireplknet_s_1k": "unireplknet_s_in1k_224_acc83.91.pth",
"unireplknet_s_22k": "unireplknet_s_in22k_pretrain.pth",
"unireplknet_s_22k_to_1k": "unireplknet_s_in22k_to_in1k_384_acc86.44.pth",
"unireplknet_b_22k": "unireplknet_b_in22k_pretrain.pth",
"unireplknet_b_22k_to_1k": "unireplknet_b_in22k_to_in1k_384_acc87.40.pth",
"unireplknet_l_22k": "unireplknet_l_in22k_pretrain.pth",
"unireplknet_l_22k_to_1k": "unireplknet_l_in22k_to_in1k_384_acc87.88.pth",
"unireplknet_xl_22k": "unireplknet_xl_in22k_pretrain.pth",
"unireplknet_xl_22k_to_1k": "unireplknet_xl_in22k_to_in1k_384_acc87.96.pth"
}
def load_with_key(model, key):
# if huggingface hub is found, download from our huggingface repo
if hf_hub_download is not None:
repo_id = 'DingXiaoH/UniRepLKNet'
cache_file = hf_hub_download(repo_id=repo_id, filename=huggingface_file_names[key])
checkpoint = torch.load(cache_file, map_location='cpu')
else:
checkpoint = torch.hub.load_state_dict_from_url(url=model_urls[key], map_location="cpu", check_hash=True)
if 'model' in checkpoint:
checkpoint = checkpoint['model']
model.load_state_dict(checkpoint)
def initialize_with_pretrained(model, model_name, in_1k_pretrained, in_22k_pretrained, in_22k_to_1k):
if in_1k_pretrained:
key = model_name + '_1k'
elif in_22k_pretrained:
key = model_name + '_22k'
elif in_22k_to_1k:
key = model_name + '_22k_to_1k'
else:
key = None
if key:
load_with_key(model, key)
@register_model
def unireplknet_a(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(40, 80, 160, 320), **kwargs)
initialize_with_pretrained(model, 'unireplknet_a', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_f(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(48, 96, 192, 384), **kwargs)
initialize_with_pretrained(model, 'unireplknet_f', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_p(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(64, 128, 256, 512), **kwargs)
initialize_with_pretrained(model, 'unireplknet_p', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_n(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_N_depths, dims=(80, 160, 320, 640), **kwargs)
initialize_with_pretrained(model, 'unireplknet_n', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_t(in_1k_pretrained=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_T_depths, dims=(80, 160, 320, 640), **kwargs)
initialize_with_pretrained(model, 'unireplknet_t', in_1k_pretrained, False, False)
return model
@register_model
def unireplknet_s(in_1k_pretrained=False, in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(96, 192, 384, 768), **kwargs)
initialize_with_pretrained(model, 'unireplknet_s', in_1k_pretrained, in_22k_pretrained, in_22k_to_1k)
return model
@register_model
def unireplknet_b(in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(128, 256, 512, 1024), **kwargs)
initialize_with_pretrained(model, 'unireplknet_b', False, in_22k_pretrained, in_22k_to_1k)
return model
@register_model
def unireplknet_l(in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(192, 384, 768, 1536), **kwargs)
initialize_with_pretrained(model, 'unireplknet_l', False, in_22k_pretrained, in_22k_to_1k)
return model
@register_model
def unireplknet_xl(in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(256, 512, 1024, 2048), **kwargs)
initialize_with_pretrained(model, 'unireplknet_xl', False, in_22k_pretrained, in_22k_to_1k)
return model
@register_model
def unireplknet_h(in_22k_pretrained=False, in_22k_to_1k=False, **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(480, 960, 1920, 3840), **kwargs)
initialize_with_pretrained(model, 'unireplknet_h', False, in_22k_pretrained, in_22k_to_1k)
return model
if __name__ == '__main__':
model_large = unireplknet_l()
print(model_large)
ckpt = torch.load("UniRepLKNet-L-b75k_s10B_CLIP-in1k_75.72.pt")
model_large.load_state_dict(ckpt,strict=False) # Since we do not need heads in CLIP pretraining.
print("Loaded CLIP Pretrained Models") |